126
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Unveiling MurE ligase potential inhibitors for treating multi-drug resistant Acinetobacter baumannii

, , &
Pages 2358-2368 | Received 03 Mar 2023, Accepted 14 Apr 2023, Published online: 26 Apr 2023

References

  • Ahmad, S., Raza, S., Abro, A., Liedl, K. R., & Azam, S. S. (2019). Toward novel inhibitors against KdsB: A highly specific and selective broad-spectrum bacterial enzyme. Journal of Biomolecular Structure & Dynamics, 37(5), 1326–1345. https://doi.org/10.1080/07391102.2018.1459318
  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2017). Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 77, 72–85. https://doi.org/10.1016/j.jmgm.2017.07.024
  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2018). Comparative subtractive proteomics based ranking for antibiotic targets against the dirtiest superbug: Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 82, 74–92. https://doi.org/10.1016/j.jmgm.2018.04.005
  • Alamri, M. A., Mirza, M. U., Adeel, M. M., Ashfaq, U. A., Tahir Ul Qamar, M., Shahid, F., Ahmad, S., Alatawi, E. A., Albalawi, G. M., Allemailem, K. S., & Almatroudi, A. (2022). Structural elucidation of rift valley fever virus L protein towards the discovery of its potential inhibitors. Pharmaceuticals, 15(6), 659. https://doi.org/10.3390/ph15060659
  • Alamri, M. A., Tahir Ul Qamar, M., Alabbas, A. B., Alqahtani, S. M., Alossaimi, M. A., Azam, S., Hashmi, M. H., & Rajoka, M. S. R. (2022). Molecular and structural analysis of specific mutations from saudi isolates of SARS-CoV-2 RNA-dependent RNA polymerase and their implications on protein structure and drug–protein binding. Molecules, 27(19), 6475. https://doi.org/10.3390/molecules27196475
  • Antunes, L., Visca, P., & Towner, K. J. (2014). Acinetobacter baumannii: Evolution of a global pathogen. Pathogens and Disease, 71(3), 292–301. https://doi.org/10.1111/2049-632X.12125
  • Baek, S., Kwon, S. H., Jeon, J. Y., Lee, G. Y., Ju, H. S., Yun, H. J., Cho, D. J., Lee, K. P., & Nam, M. H. (2022). Radotinib attenuates TGF$β$-mediated pulmonary fibrosis in vitro and in vivo: Exploring the potential of drug repurposing. BMC Pharmacology & Toxicology, 23(1), 93. https://doi.org/10.1186/s40360-022-00634-x
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bergström, C. A. S., & Larsson, P. (2018). Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International Journal of Pharmaceutics, 540(1–2), 185–193. https://doi.org/10.1016/j.ijpharm.2018.01.044
  • Biovia, D. S. (2017). Discovery studio visualizer.
  • Bugg, T. D. H., Braddick, D., Dowson, C. G., & Roper, D. I. (2011). Bacterial cell wall assembly: Still an attractive antibacterial target. Trends in Biotechnology, 29(4), 167–173. https://doi.org/10.1016/j.tibtech.2010.12.006
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., III, Darden, T. A., Duke, R. E., & Gohlke, H. (2014). The FF14SB force field. Amber, 14, 29–31.
  • Chen, L., Yuan, J., Xu, Y., Zhang, F., & Chen, Z. (2018). Comparison of clinical manifestations and antibiotic resistances among three genospecies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. PLoS One, 13(2), e0191748. https://doi.org/10.1371/journal.pone.0191748
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chusri, S., Chongsuvivatwong, V., Rivera, J. I., Silpapojakul, K., Singkhamanan, K., McNeil, E., & Doi, Y. (2014). Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrobial Agents and Chemotherapy, 58(7), 4172–4179. https://doi.org/10.1128/AAC.02992-14
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology. (pp. 243–250). Springer.
  • Dickson, B., Feng, C., Huang, H., Joshi, M., & Post, C. B. (2015). 42 Expanding the conformational space of structure/function relationship of tyrosine kinases. Journal of Biomolecular Structure and Dynamics, 33(sup1), 29–29. https://doi.org/10.1080/07391102.2015.1032591
  • Dutta, M., & Kumar, M. V. S. (2015). 39 Inhibition of A$β$aggregation in Alzheimer’s disease using the poly-ion short single stranded DNA: In silico study. Journal of Biomolecular Structure and Dynamics, 33(sup1), 27–27. https://doi.org/10.1080/07391102.2015.1032588
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • El Bakri, Y., Anouar, E. H., Ahmad, S., Nassar, A. A., Taha, M. L., Mague, J. T., El Ghayati, L., & Essassi, E. M. (2021). Synthesis and identification of novel potential molecules against COVID-19 main protease through structure-guided virtual screening approach. Applied Biochemistry and Biotechnology, 193(11), 3602–3623. https://doi.org/10.1007/s12010-021-03615-8
  • Genheden, S., Kuhn, O., Mikulskis, P., Hoffmann, D., & Ryde, U. (2012). The normal-mode entropy in the MM/GBSA method: Effect of system truncation, buffer region, and dielectric constant. Journal of Chemical Information and Modeling, 52(8), 2079–2088. https://doi.org/10.1021/ci3001919
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Halgren, T. a. (1996). Merck molecular force field. Journal of Computational Chemistry, 17(5–6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W
  • Harding, C. M., Hennon, S. W., & Feldman, M. F. (2018). Uncovering the mechanisms of Acinetobacter baumannii virulence. Nature Reviews. Microbiology, 16(2), 91–102. https://doi.org/10.1038/nrmicro.2017.148
  • He, X., Liu, S., Lee, T.-S., Ji, B., Man, V. H., York, D. M., & Wang, J. (2020). Fast, accurate, and reliable protocols for routine calculations of protein–ligand binding affinities in drug design projects using AMBER GPU-TI with ff14SB/GAFF. ACS Omega, 5(9), 4611–4619. https://doi.org/10.1021/acsomega.9b04233
  • Humayun, F., Khan, A., Ahmad, S., Yuchen, W., Wei, G., Nizam-Uddin, N., Hussain, Z., Khan, W., Zaman, N., Rizwan, M., Waseem, M., & Wei, D.-Q. (2022). Abrogation of SARS-CoV-2 interaction with host (NRP1) Neuropilin-1 receptor through high-affinity marine natural compounds to curtail the infectivity: A structural-dynamics data. Computers in Biology and Medicine, 141, 104714. https://doi.org/10.1016/j.compbiomed.2021.104714
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ismail, S., Ahmad, S., & Azam, S. S. (2020). Immunoinformatics characterization of SARS-CoV-2 spike glycoprotein for prioritization of epitope based multivalent peptide vaccine. Journal of Molecular Liquids, 314, 113612. https://doi.org/10.1016/j.molliq.2020.113612
  • Jung, K. H., Kim, Y. G., Kim, C. M., Ha, H. J., Lee, C. S., Lee, J. H., & Park, H. H. (2021). Wide-open conformation of UDP-MurNc-tripeptide ligase revealed by the substrate-free structure of MurE from Acinetobacter baumannii. FEBS Letters, 595(2), 275–283. https://doi.org/10.1002/1873-3468.14007
  • Kaliappan, S., & Bombay, I. I. T. (2018). UCSF Chimera-Overview.
  • Khan, A., Adil, S., Qudsia, H. A., Waheed, Y., Alshabrmi, F. M., & Wei, D.-Q. (2023). Structure-based design of promising natural products to inhibit thymidylate kinase from Monkeypox virus and validation using free energy calculations. Computers in Biology and Medicine, 158, 106797. https://doi.org/10.1016/j.compbiomed.2023.106797
  • Khan, A., Imran, K., Zhu, G., Ji, J., Zhang, Y., Guan, X., Ge, G., Heng, W., & Wei, D.-Q. (2023). Discovery of Isojacareubin as a covalent inhibitor of SARS-CoV-2 main protease using structural and experimental approaches. Journal of Medical Virology, 95(2), 28542. https://doi.org/10.1002/jmv.28542
  • Khan, F. I., Ali, S., Chen, W., Anjum, F., Shafie, A., Hassan, M., & Lai, D. (2021). High-resolution MD simulation studies to get mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. Current Topics in Medicinal Chemistry, 21(31), 2839–2850. https://doi.org/10.2174/1568026621666211105095731
  • Khan, F. I., Gupta, P., Roy, S., Azum, N., Alamry, K. A., Asiri, A. M., Lai, D., & Hassan, M. I. (2020). Mechanistic insights into the urea-induced denaturation of human sphingosine kinase 1. International Journal of Biological Macromolecules, 161, 1496–1505. https://doi.org/10.1016/j.ijbiomac.2020.07.280
  • Khan, F. I., Hassan, F., Anwer, R., Juan, F., & Lai, D. (2020). Comparative analysis of bacteriophytochrome agp2 and its engineered photoactivatable NIR fluorescent proteins pairfp1 and pairfp2. Biomolecules, 10(9), 1286. https://doi.org/10.3390/biom10091286
  • Khan, F. I., Hassan, F., & Lai, D. (2022). In silico studies on psilocybin drug derivatives against SARS-CoV-2 and cytokine storm of human interleukin-6 receptor. Frontiers in Immunology, 12, 5940. https://doi.org/10.3389/fimmu.2021.794780
  • Khan, F. I., Kang, T., Ali, H., & Lai, D. (2021). Remdesivir strongly binds to RNA-dependent RNA polymerase, membrane protein, and main protease of SARS-CoV-2: Indication from molecular modeling and simulations. Frontiers in Pharmacology, 12, 710778. https://doi.org/10.3389/fphar.2021.710778
  • Khan, F. I., Lan, D., Durrani, R., Huan, W., Zhao, Z., & Wang, Y. (2017). The lid domain in lipases: Structural and functional determinant of enzymatic properties. Frontiers in Bioengineering and Biotechnology, 5, 16. https://doi.org/10.3389/fbioe.2017.00016
  • Khan, F. I., Lobb, K. A., & Lai, D. (2022). The molecular basis of the effect of temperature on the structure and function of SARS-CoV-2 spike protein. Frontiers in Molecular Biosciences, 9, 794960. https://doi.org/10.3389/fmolb.2022.794960
  • Khan, F. I., Rehman, M. T., Sameena, F., Hussain, T., AlAjmi, M. F., Lai, D., & Khan, M. K. A. (2022). Investigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods. Journal of Molecular Recognition: JMR, 35(7), e2958. https://doi.org/10.1002/jmr.2958
  • Khan, F. I., Song, H., Hassan, F., Tian, J., Tang, L., Lai, D., & Juan, F. (2021). Impact of amino acid substitutions on the behavior of a photoactivatable near infrared fluorescent protein PAiRFP1. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 253, 119572. https://doi.org/10.1016/j.saa.2021.119572
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Mallipeddi, P. L., Kumar, G. W., White, S. R., & Webb, T. (2014). Recent advances in computer-aided drug design as applied to anti-influenza drug discovery. Current Topics in Medicinal Chemistry, 14(16), 1875–1889. https://doi.org/10.2174/1568026614666140929153812
  • Lee, C. R., Lee, J. H., Park, M., Park, K. S., Bae, I. K., Kim, Y. B., Cha, C. J., Jeong, B. C., & Lee, S. H. (2017). Biology of Acinetobacter baumannii: Pathogenesis, antibiotic resistance mechanisms, and prospective treatment options. Frontiers in Cellular and Infection Microbiology, 7(March), 55. https://doi.org/10.3389/fcimb.2017.00055
  • Lee, Y.-T., Kuo, S.-C., Yang, S.-P., Lin, Y.-T., Chiang, D.-H., Tseng, F.-C., Chen, T.-L., & Fung, C.-P. (2013). Bacteremic nosocomial pneumonia caused by Acinetobacter baumannii and Acinetobacter nosocomialis: A single or two distinct clinical entities? Clinical Microbiology and Infection, 19(7), 640–645. https://doi.org/10.1111/j.1469-0691.2012.03988.x
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. Journal of Molecular Biology, 235(2), 625-634. https://doi.org/10.1006/jmbi.1994.1017
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Nath, A., Kumer, A., Zaben, F., & Khan, M. W. (2021). Investigating the binding affinity, molecular dynamics, and ADMET properties of 2, 3-dihydrobenzofuran derivatives as an inhibitor of fungi, bacteria, and virus protein. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 1–13. https://doi.org/10.1186/s43088-021-00117-8
  • Nemec, A., Krizova, L., Maixnerova, M., van der Reijden, T. J. K., Deschaght, P., Passet, V., Vaneechoutte, M., Brisse, S., & Dijkshoorn, L. (2011). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus–Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov.(formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov.(formerly Aci. Research in Microbiology, 162(4), 393–404. https://doi.org/10.1016/j.resmic.2011.02.006
  • Notarte, K. I. R., Quimque, M. T. J., Macaranas, I. T., Khan, A., Pastrana, A. M., Villaflores, O. B., Arturo, H. C. P., Pilapil Iv, D. Y. H., Tan, S. M. M., Wei, D.-Q., Wenzel-Storjohann, A., Tasdemir, D., Yen, C.-H., Ji, S. Y., Kim, G.-Y., Choi, Y. H., & Macabeo, A. P. G. (2023). Attenuation of lipopolysaccharide-induced inflammatory responses through inhibition of the NF-$κ$B pathway and the increased NRF2 level by a flavonol-enriched n-butanol fraction from Uvaria alba. ACS Omega, 8(6), 5377–5392. https://doi.org/10.1021/acsomega.2c06451
  • Park, Y. K., Jung, S.-I., Park, K.-H., Kim, S. H., & Ko, K. S. (2012). Characteristics of carbapenem-resistant Acinetobacter spp. other than Acinetobacter baumannii in South Korea. International Journal of Antimicrobial Agents, 39(1), 81–85. https://doi.org/10.1016/j.ijantimicag.2011.08.006
  • Paterson, D. L., & Harris, P. N. A. (2015). Editorial commentary: The new Acinetobacter equation: Hypervirulence plus antibiotic resistance equals big trouble. Oxford University Press.
  • Peleg, A. Y., Seifert, H., & Paterson, D. L. (2008). Acinetobacter baumannii: Emergence of a successful pathogen. Clinical Microbiology Reviews, 21(3), 538–582. https://doi.org/10.1128/CMR.00058-07
  • Perdih, A., Wolber, G., & Solmajer, T. (2013). Molecular dynamics simulation and linear interaction energy study of d-Glu-based inhibitors of the MurD ligase. Journal of Computer-Aided Molecular Design, 27(8), 723–738. https://doi.org/10.1007/s10822-013-9673-3
  • Petersen, H. G. (1995). Accuracy and efficiency of the particle mesh Ewald method. The Journal of Chemical Physics, 103(9), 3668–3679. https://doi.org/10.1063/1.470043
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Roe, D. R., & Cheatham III, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Saha, N., & Azam, M. A. (2020). MurE inhibitors as antibacterial agents: A review. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 98(3–4), 127–136. https://doi.org/10.1007/s10847-020-01018-6
  • Sahakyan, H. (2021). Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. Journal of Computer-Aided Molecular Design, 35(6), 731–736. https://doi.org/10.1007/s10822-021-00389-3
  • Sanober, G., Ahmad, S., & Azam, S. S. (2017). Identification of plausible drug targets by investigating the druggable genome of MDR Staphylococcus epidermidis. Gene Reports, 7, 147–153. https://doi.org/10.1016/j.genrep.2017.04.008
  • Santajit, S., & Indrawattana, N. (2016). Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Research International, 2016, 1–8. https://doi.org/10.1155/2016/2475067
  • Sayaf, A. M., Ahmad, H., Aslam, M. A., Ghani, S., A., Bano, S., Yousafi, Q., Suleman, M., Khan, A., Yeoh, K. K., & Wei, D.-Q. (2023). Pharmacotherapeutic Potential of Natural Products to Target the SARS-CoV-2 PLpro Using Molecular Screening and Simulation Approaches. Applied Biochemistry and Biotechnology, 1–20. https://doi.org/10.1007/s12010-023-04466-1
  • Sprenger, K. G., Jaeger, V. W., & Pfaendtner, J. (2015). The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. The Journal of Physical Chemistry. B, 119(18), 5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689
  • Sussman, J. L., Lin, D., Jiang, J., Manning, N. O., Prilusky, J., Ritter, O., & Abola, E. E. (1998). Protein Data Bank (PDB): Database of three-dimensional structural information of biological macromolecules. Acta Crystallographica. Section D, Biological Crystallography, 54(Pt 6 Pt 1), 1078–1084. https://doi.org/10.1107/s0907444998009378
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., & Magrini, N., WHO Pathogens Priority List Working Group. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Tahir Ul Qamar, M., Zhu, X.-T., Chen, L.-L., Alhussain, L., Alshiekheid, M. A., Theyab, A., & Algahtani, M. (2022). Target-Specific machine learning scoring function improved structure-based virtual screening performance for SARS-CoV-2 drugs development. International Journal of Molecular Sciences, 23(19), 11003. https://doi.org/10.3390/ijms231911003
  • Talele, T. T., Khedkar, S. A., & Rigby, A. C. (2010). Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Current Topics in Medicinal Chemistry, 10(1), 127–141. https://doi.org/10.2174/156802610790232251
  • Turner, P. J. (2005). XMGRACE, version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Van De Waterbeemd, H., & Gifford, E. (2003). ADMET in silico modelling: Towards prediction paradise? Nature Reviews. Drug Discovery, 2(3), 192–204. https://doi.org/10.1038/nrd1032
  • Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10-11), 591–601. https://doi.org/10.1007/s10822-007-9142-y
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vrancianu, C. O., Gheorghe, I., Czobor, I. B., & Chifiriuc, M. C. (2020). Antibiotic resistance profiles, molecular mechanisms and innovative treatment strategies of Acinetobacter baumannii. Microorganisms, 8(6), 935. https://doi.org/10.3390/microorganisms8060935
  • Walter, A., & Mayer, C. (2019). Peptidoglycan structure, biosynthesis, and dynamics during bacterial growth. In Extracellular sugar-based biopolymers matrices (pp. 237–299). Springer.
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Whitty, A. (2011). Growing PAINS in academic drug discovery. Future Medicinal Chemistry, 3(7), 797–801. https://doi.org/10.4155/fmc.11.44
  • Wisplinghoff, H., Paulus, T., Lugenheim, M., Stefanik, D., Higgins, P. G., Edmond, M. B., Wenzel, R. P., & Seifert, H. (2012). Nosocomial bloodstream infections due to Acinetobacter baumannii, Acinetobacter pittii and Acinetobacter nosocomialis in the United States. The Journal of Infection, 64(3), 282–290. https://doi.org/10.1016/j.jinf.2011.12.008
  • Woods, C. J., Malaisree, M., Michel, J., Long, B., McIntosh-Smith, S., & Mulholland, A. J. (2014). Rapid decomposition and visualisation of protein-ligand binding free energies by residue and by water. Faraday Discussions, 169, 477–499. https://doi.org/10.1039/c3fd00125c
  • World Health Organization. (2019). WHO consolidated guidelines on drug-resistant tuberculosis treatment (Issue WHO/CDS/TB/2019.7). World Health Organization.
  • Yu, W., & MacKerell, A. D. (2017). Computer-aided drug design methods. In Antibiotics (pp. 85–106). Springer.
  • Zouhir, A., Jemli, S., Omrani, R., Kthiri, A., Jridi, T., & Sebei, K. (2021). In silico molecular analysis and docking of potent antimicrobial peptides against MurE enzyme of methicillin resistant Staphylococcus aureus. International Journal of Peptide Research and Therapeutics, 27(2), 1253–1263. https://doi.org/10.1007/s10989-021-10165-4

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.