210
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Computer aided drug discovery (CADD) of a thieno[2,3-d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 2369-2391 | Received 14 Jan 2023, Accepted 14 Apr 2023, Published online: 02 May 2023

References

  • Aborehab, N. M., Elnagar, M. R., & Waly, N. E. (2021). Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF‐7 human breast cancer cell line. Journal of Biochemical and Molecular Toxicology, 35(2), e22638. https://doi.org/10.1002/jbt.22638
  • Al-Rashood, S. T., Hamed, A. R., Hassan, G. S., Alkahtani, H. M., Almehizia, A. A., Alharbi, A., Al-Sanea, M. M., & Eldehna, W. M. (2020). Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 831–839. https://doi.org/10.1080/14756366.2020.1743281
  • Antonsson, B., Conti, F., Ciavatta, A., Montessuit, S., Lewis, S., Martinou, I., Bernasconi, L., Bernard, A., Mermod, J. J., Mazzei, G., Maundrell, K., Gambale, F., Sadoul, R., & Martinou, J. C. (1997). Inhibition of Bax channel-forming activity by Bcl-2. Science (New York, N.Y.), 277(5324), 370–372. https://doi.org/10.1126/science.277.5324.370
  • Balah, A., Ezzat, O., & Akool, E.-S. (2018). Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-β/Smad signaling pathway in rat liver. International Immunopharmacology, 65, 493–502. https://doi.org/10.1016/j.intimp.2018.09.033
  • Ballard, P., Bradbury, R. H., Harris, C. S., Hennequin, L. F. A., Hickinson, M., Johnson, P. D., Kettle, J. G., Klinowska, T., Leach, A. G., Morgentin, R., Pass, M., Ogilvie, D. J., Olivier, A., Warin, N., & Williams, E. J. (2006). Inhibitors of epidermal growth factor receptor tyrosine kinase: Novel C-5 substituted anilinoquinazolines designed to target the ribose pocket. Bioorganic & Medicinal Chemistry Letters, 16(6), 1633–1637. https://doi.org/10.1016/j.bmcl.2005.12.028
  • Bonomi, P. (2003). Erlotinib: A new therapeutic approach for non-small cell lung cancer. Expert Opinion on Investigational Drugs, 12(8), 1395–1401. https://doi.org/10.1517/13543784.12.8.1395
  • Borenfreund, E., & Puerner, J. A. (1985). Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology Letters, 24(2-3), 119–124. https://doi.org/10.1016/0378-4274(85)90046-3
  • Crawford, E. D., & Wells, J. A. (2011). Caspase substrates and cellular remodeling. Annual Review of Biochemistry, 80, 1055–1087. https://doi.org/10.1146/annurev-biochem-061809-121639
  • Dearden, J. C. (2003). In silico prediction of drug toxicity. Journal of Computer-Aided Molecular Design, 17(2–4), 119–127. https://doi.org/10.1023/a:1025361621494
  • Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–277. https://doi.org/10.1016/0022-1759(86)90368-6
  • Eissa, I. H., Alesawy, M. S., Saleh, A. M., Elkaeed, E. B., Alsfouk, B. A., El-Attar, A.-A. M., & Metwaly, A. M. (2022). Ligand and structure-based in silico determination of the most promising SARS-CoV-2 nsp16-nsp10 2′-o-Methyltransferase complex inhibitors among 3009 FDA approved drugs. Molecules, 27(7), 2287. https://doi.org/10.3390/molecules27072287
  • Eissa, I. H., Khalifa, M. M., Elkaeed, E. B., Hafez, E. E., Alsfouk, A. A., & Metwaly, A. M. (2021). In silico exploration of potential natural inhibitors against SARS-Cov-2 nsp10. Molecules, 26(20), 6151. https://doi.org/10.3390/molecules26206151
  • Eldehna, W. M., Hassan, G. S., Al-Rashood, S. T., Al-Warhi, T., Altyar, A. E., Alkahtani, H. M., Almehizia, A. A., & Abdel-Aziz, H. A. (2019). Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 322–332. https://doi.org/10.1080/14756366.2018.1547286
  • Elkady, H., Elwan, A., El-Mahdy, H. A., Doghish, A. S., Ismail, A., Taghour, M. S., Elkaeed, E. B., Eissa, I. H., Dahab, M. A., Mahdy, H. A., & Khalifa, M. M. (2022). New benzoxazole derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, anti-proliferative evaluation, flowcytometric analysis, and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 403–416. https://doi.org/10.1080/14756366.2021.2015343
  • Elkaeed, E. B., Eissa, I. H., Elkady, H., Abdelalim, A., Alqaisi, A. M., Alsfouk, A. A., Elwan, A., & Metwaly, A. M. (2022). A multistage in silico study of natural potential inhibitors targeting SARS-CoV-2 main protease. International Journal of Molecular Sciences, 23(15), 8407. https://doi.org/10.3390/ijms23158407
  • Elkaeed, E. B., Elkady, H., Belal, A., Alsfouk, B. A., Ibrahim, T. H., Abdelmoaty, M., Arafa, R. K., Metwaly, A. M., & Eissa, I. H. (2022). Multi-phase in silico discovery of potential SARS-CoV-2 RNA-dependent RNA polymerase inhibitors among 3009 clinical and FDA-approved related drugs. Processes, 10(3), 530. https://doi.org/10.3390/pr10030530
  • Elkaeed, E. B., Khalifa, M. M., Alsfouk, B. A., Alsfouk, A. A., El-Attar, A.-A. M., Eissa, I. H., & Metwaly, A. (2022). The discovery of potential SARS-CoV-2 natural inhibitors among 4924 African metabolites targeting the papain-like protease: A multi-phase in silico approach. Metabolites, 12(11), 1122. https://doi.org/10.3390/metabo12111122
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022). Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 27(14), 4606. https://doi.org/10.3390/molecules27144606
  • Elkaeed, E. B., Youssef, F. S., Eissa, I. H., Elkady, H., Alsfouk, A. A., Ashour, M. L., El Hassab, M. A., Abou-Seri, S. M., & Metwaly, A. M. (2022). Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease. International Journal of Molecular Sciences, 23(13), 6912. https://doi.org/10.3390/ijms23136912
  • Elmetwally, S. A., Saied, K. F., Eissa, I. H., & Elkaeed, E. (2019). Design, synthesis and anticancer evaluation of thieno [2, 3-d] pyrimidine derivatives as dual EGFR/HER2 inhibitors and apoptosis inducers. Bioorganic Chemistry, 88, 102944.
  • Elnagar, M. R., Walls, A. B., Helal, G. K., Hamada, F. M., Thomsen, M. S., & Jensen, A. A. (2018). Functional characterization of α7 nicotinic acetylcholine and NMDA receptor signaling in SH-SY5Y neuroblastoma cells in an ERK phosphorylation assay. European Journal of Pharmacology, 826, 106–113. https://doi.org/10.1016/j.ejphar.2018.02.047
  • Engelman, J. A., Zejnullahu, K., Gale, C.-M., Lifshits, E., Gonzales, A. J., Shimamura, T., Zhao, F., Vincent, P. W., Naumov, G. N., Bradner, J. E., Althaus, I. W., Gandhi, L., Shapiro, G. I., Nelson, J. M., Heymach, J. V., Meyerson, M., Wong, K.-K., & Jänne, P. A. (2007). PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Research, 67(24), 11924–11932. https://doi.org/10.1158/0008-5472.CAN-07-1885
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Furet, P., Caravatti, G., Lydon, N., Priestle, J. P., Sowadski, J. M., Trinks, U., & Traxler, P. (1995). Modelling study of protein kinase inhibitors: Binding mode of staurosporine and origin of the selectivity of CGP 52411. Journal of Computer-Aided Molecular Design, 9(6), 465–472. https://doi.org/10.1007/BF00124317
  • Gandin, V., Ferrarese, A., Dalla Via, M., Marzano, C., Chilin, A., & Marzaro, G. (2015). Targeting kinases with anilinopyrimidines: Discovery of N-phenyl-N’-[4-(pyrimidin-4-ylamino) phenyl] urea derivatives as selective inhibitors of class III receptor tyrosine kinase subfamily. Scientific Reports, 5, 16750. https://doi.org/10.1038/srep16750
  • Goh, G. B., Hodas, N. O., & Vishnu, A. (2017). Deep learning for computational chemistry. Journal of Computational Chemistry, 38(16), 1291–1307. https://doi.org/10.1002/jcc.24764
  • Huether, A., Höpfner, M., Baradari, V., Schuppan, D., & Scherübl, H. (2005). EGFR blockade by cetuximab alone or as combination therapy for growth control of hepatocellular cancer. Biochemical Pharmacology, 70(11), 1568–1578. https://doi.org/10.1016/j.bcp.2005.09.007
  • Idakwo, G., Luttrell, J., Chen, M., Hong, H., Zhou, Z., Gong, P., & Zhang, C. (2018). A review on machine learning methods for in silico toxicity prediction. Journal of Environmental Science and Health. Part C, Environmental Carcinogenesis & Ecotoxicology Reviews, 36(4), 169–191. https://doi.org/10.1080/10590501.2018.1537118
  • Ishikawa, T., Seto, M., Banno, H., Kawakita, Y., Oorui, M., Taniguchi, T., Ohta, Y., Tamura, T., Nakayama, A., Miki, H., Kamiguchi, H., Tanaka, T., Habuka, N., Sogabe, S., Yano, J., Aertgeerts, K., & Kamiyama, K. (2011). Design and synthesis of novel human epidermal growth factor receptor 2 (HER2)/epidermal growth factor receptor (EGFR) dual inhibitors bearing a pyrrolo [3, 2-d] pyrimidine scaffold. Journal of Medicinal Chemistry, 54(23), 8030–8050. https://doi.org/10.1021/jm2008634
  • Jia, Y., Quinn, C. M., Gagnon, A. I., & Talanian, R. (2006). Homogeneous time-resolved fluorescence and its applications for kinase assays in drug discovery. Analytical Biochemistry, 356(2), 273–281. https://doi.org/10.1016/j.ab.2006.05.006
  • Kim, E. S. (2016). Olmutinib: First global approval. Drugs, 76(11), 1153–1157. https://doi.org/10.1007/s40265-016-0606-z
  • Kim, Y., Ko, J., Cui, Z., Abolhoda, A., Ahn, J. S., Ou, S.-H., Ahn, M.-J., & Park, K. (2012). The EGFR T790M mutation in acquired resistance to an irreversible second-generation EGFR inhibitor. Molecular Cancer Therapeutics, 11(3), 784–791. https://doi.org/10.1158/1535-7163.MCT-11-0750
  • Kruhlak, N., Benz, R., Zhou, H., & Colatsky, T. (2012). (Q) SAR modeling and safety assessment in regulatory review. Clinical Pharmacology and Therapeutics, 91(3), 529–534. https://doi.org/10.1038/clpt.2011.300
  • Kuida, K. (2000). Caspase-9. The International Journal of Biochemistry & Cell Biology, 32(2), 121–124. https://doi.org/10.1016/s1357-2725(99)00024-2
  • Kwak, E. L., Sordella, R., Bell, D. W., Godin-Heymann, N., Okimoto, R. A., Brannigan, B. W., Harris, P. L., Driscoll, D. R., Fidias, P., Lynch, T. J., Rabindran, S. K., McGinnis, J. P., Wissner, A., Sharma, S. V., Isselbacher, K. J., Settleman, J., & Haber, D. A. (2005). Irreversible inhibitors of the EGF receptor may circumvent acquired resi…˙.stance to gefitinib. Proceedings of the National Academy of Sciences of the United States of America, 102(21), 7665–7670. https://doi.org/10.1073/pnas.0502860102
  • Li, D., Ambrogio, L., Shimamura, T., Kubo, S., Takahashi, M., Chirieac, L. R., Padera, R. F., Shapiro, G. I., Baum, A., Himmelsbach, F., Rettig, W. J., Meyerson, M., Solca, F., Greulich, H., & Wong, K.-K. (2008). BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene, 27(34), 4702–4711. https://doi.org/10.1038/onc.2008.109
  • Li, P., Zhang, Q., Torossian, A., Li, Z-b., Xu, W-c., Lu, B., & Fu, S. (2012). Simultaneous inhibition of EGFR and PI3K enhances radiosensitivity in human breast cancer. International Journal of Radiation Oncology, Biology, Physics, 83(3), e391–e397. https://doi.org/10.1016/j.ijrobp.2011.12.090
  • Liu, Y., & Gray, N. S. (2006). Rational design of inhibitors that bind to inactive kinase conformations. Nature Chemical Biology, 2(7), 358–364. https://doi.org/10.1038/nchembio799
  • Lo, K. K.-W., Lee, T. K.-M., Lau, J. S.-Y., Poon, W.-L., & Cheng, S.-H. (2008). Luminescent biological probes derived from ruthenium (II) estradiol polypyridine complexes. Inorganic Chemistry, 47(1), 200–208. https://doi.org/10.1021/ic701735q
  • Lyons, T. (2019). Targeted therapies for triple-negative breast cancer. Current Treatment Options in Oncology, 20(11), 1–13.
  • Metwaly, A. M., Elkaeed, E. B., Alsfouk, B. A., Saleh, A. M., Mostafa, A. E., & Eissa, I. (2022). The computational preventive potential of the rare Flavonoid, Patuletin, isolated from Tagetes patula, against SARS-CoV-2. Plants, 11(14), 1886. https://doi.org/10.3390/plants11141886
  • Metwaly, A. M., Elwan, A., El-Attar, A.-A. M., Al-Rashood, S. T., & Eissa, I. (2022). Structure-based virtual screening, docking, ADMET, molecular dynamics, and MM-PBSA calculations for the discovery of potential natural SARS-CoV-2 helicase inhibitors from the traditional Chinese medicine. Journal of Chemistry, 2022, 1-23.
  • Mikhalev, A., Kon’shin, M., Kolla, V., Nazmetdinov, F. Y., & Vakhrin, M. (1997). Synthesis and antiinflammatory activity of 2-substituted cinchoninic and 1, 2, 4-triazolo [4, 3-a] quinoline-5-carboxylic acids. Pharmaceutical Chemistry Journal, 31(11), 600–602. https://doi.org/10.1007/BF02464278
  • Nascimento, I., de Aquino, T. M., & da Silva-Júnior, E. (2022). Discovery, The new era of drug discovery: The power of computer-aided drug design (CADD). Letters in Drug Design & Discovery, 19(11), 951–955. https://doi.org/10.2174/1570180819666220405225817
  • Nasser, A. A., Eissa, I. H., Oun, M. R., El-Zahabi, M. A., Taghour, M. S., Belal, A., Saleh, A. M., Mehany, A. B. M., Luesch, H., Mostafa, A. E., Afifi, W. M., Rocca, J. R., & Mahdy, H. A. (2020). Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFRWT and EGFRT790M. Organic & Biomolecular Chemistry, 18(38), 7608–7634. https://doi.org/10.1039/d0ob01557a
  • Norinder, U., & Bergström, C. A. (2006). Prediction of ADMET properties. ChemMedChem: Chemistry Enabling Drug Discovery, 1(9), 920–937. https://doi.org/10.1002/cmdc.200600155
  • Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2–16. https://doi.org/10.1016/j.gene.2005.10.018
  • Pao, W., Miller, V. A., Politi, K. A., Riely, G. J., Somwar, R., Zakowski, M. F., Kris, M. G., & Varmus, H. (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Medicine, 2(3), e73. https://doi.org/10.1371/journal.pmed.0020073
  • Park, J. H., Liu, Y., Lemmon, M. A., & Radhakrishnan, R. (2012). Erlotinib binds both inactive and active conformations of the EGFR tyrosine kinase domain. The Biochemical Journal, 448(3), 417–423. https://doi.org/10.1042/BJ20121513
  • Perlman, H., Zhang, X., Chen, M. W., Walsh, K., & Buttyan, R. (1999). An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death and Differentiation, 6(1), 48–54. https://doi.org/10.1038/sj.cdd.4400453
  • Pietenpol, J., & Stewart, Z. (2002). Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology, 181–182, 475–481. https://doi.org/10.1016/S0300-483X(02)00460-2
  • Sabt, A., Abdelhafez, O. M., El-Haggar, R. S., Madkour, H. M., Eldehna, W. M., El-Khrisy, E. E.-D. A., Abdel-Rahman, M. A., & Rashed, L. A. (2018). Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1095–1107. https://doi.org/10.1080/14756366.2018.1477137
  • Salvesen, G. S., & Riedl, S. J. (2008). Caspase mechanisms. In Programmed cell death in cancer progression and therapy (pp. 13–23). Springer.
  • Sequist, L. V., Besse, B., Lynch, T. J., Miller, V. A., Wong, K. K., Gitlitz, B., Eaton, K., Zacharchuk, C., Freyman, A., Powell, C., Ananthakrishnan, R., Quinn, S., & Soria, J.-C. (2010). Neratinib, an irreversible pan-ErbB receptor tyrosine kinase inhibitor: Results of a phase II trial in patients with advanced non–small-cell lung cancer. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 28(18), 3076–3083. https://doi.org/10.1200/JCO.2009.27.9414
  • Sogabe, S., Kawakita, Y., Igaki, S., Iwata, H., Miki, H., Cary, D. R., Takagi, T., Takagi, S., Ohta, Y., & Ishikawa, T. (2013). Structure-based approach for the discovery of pyrrolo [3, 2-d] pyrimidine-based EGFR T790M/L858R mutant inhibitors. ACS Medicinal Chemistry Letters, 4(2), 201–205. https://doi.org/10.1021/ml300327z
  • Suleimen, Y. M., Jose, R. A., Suleimen, R. N., Arenz, C., Ishmuratova, M., Toppet, S., Dehaen, W., Alsfouk, A. A., Elkaeed, E. B., Eissa, I. H., & Metwaly, A. M. (2022a). Isolation and in silico anti-SARS-CoV-2 papain-like protease potentialities of two rare 2-phenoxychromone derivatives from Artemisia spp. Molecules, 27(4), 1216. https://doi.org/10.3390/molecules27041216
  • Suleimen, Y. M., Jose, R. A., Suleimen, R. N., Arenz, C., Ishmuratova, M. Y., Toppet, S., Dehaen, W., Alsfouk, B. A., Elkaeed, E. B., Eissa, I. H., & Metwaly, A. M. (2022b). Jusanin, a new flavonoid from Artemisia commutata with an in silico inhibitory potential against the SARS-CoV-2 main protease. Molecules, 27(5), 1636. https://doi.org/10.3390/molecules27051636
  • Suleimen, Y. M., Jose, R. A., Suleimen, R. N., Ishmuratova, M. Y., Toppet, S., Dehaen, W., Alsfouk, A. A., Elkaeed, E. B., Eissa, I. H., & Metwaly, A. M. (2022c). Isolation and in silico SARS-CoV-2 main protease inhibition potential of Jusan Coumarin, a new dicoumarin from Artemisia glauca. Molecules, 27(7), 2281. https://doi.org/10.3390/molecules27072281
  • Taghour, M. S., Elkady, H., Eldehna, W. M., El-Deeb, N. M., Kenawy, A. M., Elkaeed, E. B., Alsfouk, A. A., Alesawy, M. S., Metwaly, A. M., & Eissa, I. H. (2022). Design and synthesis of thiazolidine-2, 4-diones hybrids with 1, 2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: In-vitro anticancer evaluation and in-silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1903–1917. https://doi.org/10.1080/14756366.2022.2085693
  • Taghour, M. S., Mahdy, H. A., Gomaa, M. H., Aglan, A., Eldeib, M. G., Elwan, A., Dahab, M. A., Elkaeed, E. B., Alsfouk, A. A., Khalifa, M. M., Eissa, I. H., & Elkady, H. (2022). Benzoxazole derivatives as new VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and antiproliferative evaluation. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2063–2077. https://doi.org/10.1080/14756366.2022.2103552
  • Tormyshev, V. M., Trukhin, D. V., Rogozhnikova, O. Y., Mikhalina, T. V., Troitskaya, T. I., & Flinn, A. (2006). Aryl alkyl ketones in a one-pot Gewald synthesis of 2-aminothiophenes. Synlett, 2006(16), 2559–2564. https://doi.org/10.1055/s-2006-951484
  • Van Schaeybroeck, S., Kyula, J., Kelly, D. M., Karaiskou-McCaul, A., Stokesberry, S. A., Van Cutsem, E., Longley, D. B., & Johnston, P. G. (2006). Chemotherapy-induced epidermal growth factor receptor activation determines response to combined gefitinib/chemotherapy treatment in non–small cell lung cancer cells. Molecular Cancer Therapeutics, 5(5), 1154–1165. https://doi.org/10.1158/1535-7163.MCT-05-0446
  • Wang, J., & Lenardo, M. J. (2000). Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. Journal of Cell Science, 113(5), 753–757. https://doi.org/10.1242/jcs.113.5.753
  • Xuhong, J.-C., Qi, X.-W., Zhang, Y., & Jiang, J. (2019). Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. American Journal of Cancer Research, 9(10), 2103.
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews. Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559
  • Zhang, J.-H., Zhang, Y., & Herman, B. (2003). Caspases, apoptosis and aging. Ageing Research Reviews, 2(4), 357–366. https://doi.org/10.1016/s1568-1637(03)00026-6
  • Zhao, L., Ciallella, H. L., Aleksunes, L. M., & Zhu, H. (2020). Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discovery Today. 25(9), 1624–1638. https://doi.org/10.1016/j.drudis.2020.07.005
  • Zhao, Z., Wu, H., Wang, L., Liu, Y., Knapp, S., Liu, Q., & Gray, N. S. (2014). Exploration of type II binding mode: A privileged approach for kinase inhibitor focused drug discovery? ACS Chemical Biology, 9(6), 1230–1241. https://doi.org/10.1021/cb500129t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.