129
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Reconnoitering imidazopyridazines as anticancer agents based on virtual modelling approach: quantitative structure activity relationship, molecular docking and molecular dynamics

, , , , , & ORCID Icon show all
Pages 2392-2409 | Received 10 Dec 2022, Accepted 14 Apr 2023, Published online: 09 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ajmani, S., Jadhav, K., & Kulkarni, S. A. (2006). Three-dimensional QSAR using the k-nearest neighbor method and its interpretation. Journal of Chemical Information and Modeling, 46(1), 24–31. https://doi.org/10.1021/ci0501286
  • Ajmani, S., & Kulkarni, S. A. (2008). A dual‐response partial least squares regression QSAR model and its application in design of dual activators of PPARα and PPARγ. QSAR & Combinatorial Science, 27(11–12), 1291–1304. https://doi.org/10.1002/qsar.200810023
  • Asiya, C., Mangala, K., Chandrakant, B., Muthal, A., & Kulkarni, R. (2022). Investigation of structure activity relationship: In silico studies of [1, 2, 4] triazolo [4, 3-a] pyridine ureas as P38 kinase inhibitors. Research Square. Advance online publication. https://doi.org/10.21203/rs.3.rs-1670133/v1
  • Atfi, A., Lepage, K., Allard, P., Chapdelaine, A., & Chevalier, S. (1995). Activation of a serine/threonine kinase signaling pathway by transforming growth factor type beta. Proceedings of the National Academy of Sciences of the United States of America, 92(26), 12110–12114. https://doi.org/10.1073/pnas.92.26.12110
  • Dassault Systèmes. (2020). BIOVIA Discovery Studio version 4.5. https://www.3ds.com
  • DeLano, W. (2020). The PyMOL molecular graphics system Schrödinger version 2.1.1. Schrödinger, LLC. https://pymol.org/pymol
  • Doma, A., Kulkarni, R., Palakodety, R., Sastry, G. N., Sridhara, J., & Garlapati, A. (2014). Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: Synthesis and SAR studies. Bioorganic & Medicinal Chemistry, 22(21), 6209–6219. https://doi.org/10.1016/j.bmc.2014.08.028
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Ghosh, P., & Bagchi, M. C. (2009). Comparative QSAR studies of nitrofuranyl amide derivatives using theoretical structural properties. Molecular Simulation, 35(14), 1185–1200. https://doi.org/10.1080/08927020903033141
  • Golbraikh, A., & Tropsha, A. (2000). Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. Journal of Computer-Aided Molecular Design, 5(4), 231–243. https://doi.org/10.1023/a:1020869118689
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics & Modelling, 20(4), 269–276. https://doi.org/10.1016/s1093-3263(01)00123-1
  • Halgren, T. A. (1996). Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. Journal of Computational Chemistry, 17(5–6), 553–586. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C553::AID-JCC3%3E3.0.CO;2-T
  • Hassanpour, S. H., & Dehghani, M. (2017). Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, 4(4), 127–129. https://doi.org/10.1016/j.jcrpr.2017.07.001
  • Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Kulkarni, R., Kompalli, K., Gaddam, N., Mangannavar, C. V., Darna, B., Garlapati, A., Kumar, D., & Machha, B. (2021). Synthesis, characterization, antitubercular and anti-inflammatory activity of new pyrazolo [3, 4-d] pyrimidines. Combinatorial Chemistry & High Throughput Screening, 24(8), 1300–1308. https://doi.org/10.2174/1386207323999200918114905
  • Kulkarni, R. G., Laufer, S. A., Chandrashekhar, V. M., & Garlapati, A. (2013). Synthesis, p38 kinase inhibitory and anti-inflammatory activity of new substituted benzimidazole derivatives. Medicinal Chemistry (Shariqah (United Arab Emirates)), 9(1), 91–99. https://doi.org/10.2174/157340613804488440
  • Kulkarni, R. G., Laufer, S., Mangannavar, C., & Garlapati, A. (2013). Design, synthesis and characterization of N', N"-diaryl ureas as p38 kinase inhibitors. Medicinal Chemistry (Shariqah (United Arab Emirates)), 9(2), 213–221. https://doi.org/10.2174/1573406411309020006
  • Kulkarni, R., Mitkari, U., Achaiah, G., Laufer, S., Bikshapti, D., Chandrashekar, V. M., Gurav, P. B., Joshi, S. J., & Chipade, V. D. (2018). Substituted benzamides from anti-inflammatory and p38 kinase inhibitors to antitubercular activity: Design, synthesis and screening. Mini Reviews in Medicinal Chemistry, 18(17), 1486–1497. https://doi.org/10.2174/1389557517666170707105416
  • Macha, B., Kulkarni, R., Bagul, C., Garige, A. K., Akkinepally, R., & Garlapati, A. (2021). Molecular hybridization based design and synthesis of new benzo [5, 6] chromeno [2, 3-b]-quinolin-13 (14H)-one analogs as cholinesterase inhibitors. Medicinal Chemistry Research, 30(3), 685–701. https://doi.org/10.1007/s00044-020-02670-w
  • Makhija, M. T., & Kulkarni, V. M. (2002). 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors. Journal of Computer-Aided Molecular Design, 16(3), 181–200. https://doi.org/10.1023/a:1020137802155
  • Narlik-Grassow, M., Blanco-Aparicio, C., Cecilia, Y., Peregrina, S., Garcia-Serelde, B., Muñoz-Galvan, S., Cañamero, M., & Carnero, A. (2012). The essential role of PIM kinases in sarcoma growth and bone invasion. Carcinogenesis, 33(8), 1479–1486. https://doi.org/10.1093/carcin/bgs176
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rathi, A., Kumar, D., Hasan, G. M., Haque, M. M., & Hassan, M. I. (2021). Therapeutic targeting of PIM KINASE signaling in cancer therapy: Structural and clinical prospects. Biochimica et Biophysica Acta. General Subjects, 1865(11), 129995. https://doi.org/10.1016/j.bbagen.2021.129995
  • Saxena, A., Sangwan, R. S., & Mishra, S. (2013). Fundamentals of homology modelling steps comparison among important bioinformatics tools: An overview. Science International, 1(7), 237–252. https://doi.org/10.17311/sciintl.2013.237.252
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal : EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590
  • Stroet, M., Caron, B., Visscher, K. M., Geerke, D. P., Malde, A. K., & Mark, A. E. (2018). Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane. Journal of Chemical Theory and Computation, 14(11), 5834–5845. https://doi.org/10.1021/acs.jctc.8b00768
  • Swords, R., Kelly, K., Carew, J., Nawrocki, S., Mahalingam, D., Sarantopoulos, J., Bearss, D., & Giles, F. (2011). The Pim kinases: New targets for drug development. Current Drug Targets, 12(14), 2059–2066. https://doi.org/10.2174/138945011798829447
  • Walhekar, V., Bagul, C., Kumar, D., Achaiah, G., Muthal, A., Kulkarni, R., & Basavarju, M. (2022). Computational modelling strategies in exploring triazolopyridazine PIM1 kinase inhibitors as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry, 22. Advance online publication. https://doi.org/10.2174/1871520622666220820090353
  • Walhekar, V., Bagul, C., Kumar, D., Muthal, A., Achaiah, G., & Kulkarni, R. (2022). Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1877(3), 188725. https://doi.org/10.1016/j.bbcan.2022.188725
  • Wiltgen, M. (2019). Algorithms for structure comparison and analysis: Homology modelling of proteins. Encyclopedia of Bioinformatics and Computational Biology, 1, 38–61. https://doi.org/10.1016/B978-0-12-809633-8.20484-6
  • Wurz, R. P., Sastri, C., D'Amico, D. C., Herberich, B., Jackson, C. L. M., Pettus, L. H., Tasker, A. S., Wu, B., Guerrero, N., Lipford, J. R., Winston, J. T., Yang, Y., Wang, P., Nguyen, Y., Andrews, K. L., Huang, X., Lee, M. R., Mohr, C., Zhang, J. D., … Wang, H.-L. (2016). Discovery of imidazopyridazines as potent Pim-1/2 kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(22), 5580–5590. https://doi.org/10.1016/j.bmcl.2016.09.067
  • Xu, L., Li, D., Tao, L., Yang, Y., Li, Y., & Hou, T. (2016). Binding mechanism of 1,4-dihydropyridine derivatives to L-type calcium channel Cav1.2: A molecular modelling study. Molecular bioSystems, 12(2), 379–390. https://doi.org/10.1039/c5mb00781j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.