113
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

QSAR modeling approaches to identify a novel ACE2 inhibitor that selectively bind with the C and N terminals of the ectodomain

, , , , , , , , & show all
Pages 2550-2569 | Received 25 Jan 2023, Accepted 17 Apr 2023, Published online: 05 May 2023

References

  • Almquist, R. G., Crase, J., Jennings-White, C., Meyer, R. F., Hoefle, M. L., Smith, R. D., Essenburg, A. D., & Kaplan, H. R. (1982). Derivatives of the potent angiotensin converting enzyme inhibitor 5(S)-benzamido-4-oxo-6-phenylhexanoyl-L-proline: Effect of changes at postions 2 and 5 of the hexanoic acid portion. Journal of Medicinal Chemistry, 25(11), 1292–1299. https://doi.org/10.1021/jm00353a005
  • Atlas, S. A. (2007). The renin-angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition. Journal of Managed Care Pharmacy: JMCP, 13(8 Suppl B), 9–20. https://doi.org/10.18553/jmcp.2007.13.s8-b.9
  • Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provazník, I., & Choi, I. (2016). Computer aided drug design: Success and limitations. Current Pharmaceutical Design, 22(5), 572–581. https://doi.org/10.2174/1381612822666151125000550
  • Bakal, R. L., Jawarkar, R. D., Manwar, J. V., Jaiswal, M. S., Ghosh, A., GaNDhi, A., Zaki, M. E. A., Al-Hussain, S., Samad, A., Masand, V. H., Mukerjee, N., Nasir Abbas Bukhari, S., Sharma, P., & Lewaa, I. (2022). Identification of potent aldose reductase inhibitors as antidiabetic (Anti-hyperglycemic) agents using QSAR based virtual Screening, molecular Docking, MD simulation and MMGBSA approaches. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society, 30(6), 693–710. https://doi.org/10.1016/j.jsps.2022.04.003
  • Basu, R., Poglitsch, M., Yogasundaram, H., Thomas, J., Rowe, B. H., & Oudit, G. Y. (2017). Roles of angiotensin peptides and recombinant human ACE2 in heart failure. Journal of the American College of Cardiology, 69(7), 805–819. https://doi.org/10.1016/j.jacc.2016.11.064
  • Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. Journal of Cheminformatics, 1(1). https://doi.org/10.1186/1758-2946-1-15
  • Bodiga, V. L., & Bodiga, S. (2013). Renin angiotensin system in cognitive function and dementia. Asian Journal of Neuroscience, 2013, 1–18. https://doi.org/10.1155/2013/102602
  • Bünning, P., & Riordan, J. F. (1983). Activation of angiotensin converting enzyme by monovalent anions. Biochemistry, 22(1), 110–116. https://doi.org/10.1021/bi00270a016
  • Burchill, L. J., Velkoska, E., Dean, R. G., Griggs, K., Patel, S. K., & Burrell, L. M. (2012). Combination renin–angiotensin system blockade and angiotensin-converting enzyme 2 in experimental myocardial infarction: Implications for future therapeutic directions. Clinical Science (London, England: 1979), 123(11), 649–658. https://doi.org/10.1042/CS20120162
  • Burrell, L. M., Risvanis, J., Kubota, E., Dean, R. G., MacDonald, P. S., Lu, S., Tikellis, C., Grant, S. L., Lew, R. A., Smith, A. I., Cooper, M. E., & Johnston, C. I. (2005). Myocardial infarction increases ACE2 expression in rat and humans. European Heart Journal, 26(4), 369–375. https://doi.org/10.1093/eurheartj/ehi114
  • Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz’min, V. E., Cramer, R., Benigni, R., Yang, C., Rathman, J., Terfloth, L., Gasteiger, J., Richard, A., & Tropsha, A. (2014). QSAR modeling: Where have you been? where are you going to? Journal of Medicinal Chemistry, 57(12), 4977–5010. https://doi.org/10.1021/jm4004285
  • Chirico, N., & Gramatica, P. (2011). Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient. Journal of Chemical Information and Modeling, 51(9), 2320–2335. https://doi.org/10.1021/ci200211n
  • Chirico, N., & Gramatica, P. (2012). Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection. Journal of Chemical Information and Modeling, 52(8), 2044–2058. https://doi.org/10.1021/ci300084j
  • Chrissobolis, S., Banfi, B., Sobey, C. G., & Faraci, F. M. (2012). Role of Nox isoforms in angiotensin II-induced oxidative stress and endothelial dysfunction in brain. Journal of Applied Physiology (Bethesda, MD: 1985), 113(2), 184–191. https://doi.org/10.1152/japplphysiol.00455.2012
  • Chubb, A. J., Schwager, S. L. U., Woodman, Z. L., Ehlers, M. R. W., & Sturrock, E. D. (2002). Defining the boundaries of the testis angiotensin I-converting enzyme ectodomain. Biochemical and Biophysical Research Communications, 297(5), 1225–1230. https://doi.org/10.1016/s0006-291x(02)02324-0
  • Consonni, V., Ballabio, D., & Todeschini, R. (2009). Comments on the definition of the Q2 parameter for QSAR validation. Journal of Chemical Information and Modeling, 49(7), 1669–1678. https://doi.org/10.1021/ci900115y
  • Consonni, V., Todeschini, R., Ballabio, D., & Grisoni, F. (2019). On the misleading use of QF32 for QSAR model comparison. Molecular Informatics, 38(1–2), 1800029. https://doi.org/10.1002/minf.201800029
  • Crowley, S. D., Gurley, S. B., Oliverio, M. I., Pazmino, A. K., Griffiths, R., Flannery, P. J., Spurney, R. F., Kim, H.-S., Smithies, O., Le, T. H., & Coffman, T. M. (2005). Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. The Journal of Clinical Investigation, 115(4), 1092–1099. https://doi.org/10.1172/JCI23378
  • Dearden, J. C., Cronin, M. T. D., & Kaiser, K. L. E. (2009). How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR and QSAR in Environmental Research, 20(3–4), 241–266. https://doi.org/10.1080/10629360902949567
  • Donoghue, M., Hsieh, F., Baronas, E., Godbout, K., Gosselin, M., Stagliano, N., Donovan, M., Woolf, B., Robison, K., Jeyaseelan, R., Breitbart, R. E., & Acton, S. (2000). A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation Research, 87(5), E1–E9. https://doi.org/10.1161/01.RES.87.5.e1
  • Ehlers, M. R. W., & Riordan, J. F. (1991). Angiotensin-converting enzyme: Zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Biochemistry, 30(29), 7118–7126. https://doi.org/10.1021/bi00243a012
  • Ferrario, C. M., Ahmad, S., & Groban, L. (2020). Mechanisms by which angiotensin-receptor blockers increase ACE2 levels. Nature Reviews. Cardiology, 17(6), 378–378. https://doi.org/10.1038/s41569-020-0387-7
  • Ferrario, C. M., Jessup, J., Chappell, M. C., Averill, D. B., Brosnihan, K. B., Tallant, E. A., Diz, D. I., & Gallagher, P. E. (2005). Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation, 111(20), 2605–2610. https://doi.org/10.1161/CIRCULATIONAHA.104.510461
  • Fujita, T., & Winkler, D. A. (2016). Understanding the roles of the “two QSARs. Journal of Chemical Information and Modeling, 56(2), 269–274. https://doi.org/10.1021/acs.jcim.5b00229
  • Furuhashi, M., Moniwa, N., Mita, T., Fuseya, T., Ishimura, S., Ohno, K., Shibata, S., Tanaka, M., Watanabe, Y., Akasaka, H., Ohnishi, H., Yoshida, H., Takizawa, H., Saitoh, S., Ura, N., Shimamoto, K., & Miura, T. (2015). Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. American Journal of Hypertension, 28(1), 15–21. https://doi.org/10.1093/ajh/hpu086
  • Ganten, D., Hermann, K., Unger, T., et al. (2009). The tissue Renin-Angiotensin Systems: Focus on brain angiotensin, adrenal gland and arterial wall. Clinical and Experimental Hypertension Part A: Theory and Practice, 5(7–8), 1099–1118.
  • Gaudreault, F., Morency, L.-P., & Najmanovich, R. J. (2015). NRGsuite: A PyMOL plugin to perform docking simulations in real time using FlexAID. Bioinformatics, 31(23), 3856–3858. https://doi.org/10.1093/bioinformatics/btv458
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Ghosh, A., Mukerjee, N., Sharma, B., Pant, A., Kishore Mohanta, Y., Jawarkar, R. D., Bakal, R. L., Terefe, E. M., Batiha, G. E.-S., Mostafa-Hedeab, G., Aref Albezrah, N. K., Dey, A., & Baishya, D. (2022). Target specific inhibition of protein tyrosine kinase in conjunction with cancer and SARS-COV-2 by olive nutraceuticals. Frontiers in Pharmacology, 12. https://doi.org/10.3389/fphar.2021.812565
  • Gramatica, P. (2013). On the development and validation of QSAR models. Computational Toxicology. Methods in Molecular Biology, 499–526.
  • Gramatica, P. (2014). External evaluation of QSAR models, in addition to cross-validation: verification of predictive capability on totally new chemicals. Molecular Informatics, 33(4), 311–314. https://doi.org/10.1002/minf.201400030
  • Gramatica, P. (2020). Principles of QSAR modeling. International Journal of Quantitative Structure-Property Relationships, 5(3), 61–97. https://doi.org/10.4018/IJQSPR.20200701.oa1
  • Gramatica, P., Cassani, S., & Chirico, N. (2014). QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. Journal of Computational Chemistry, 35(13), 1036–1044. https://doi.org/10.1002/jcc.23576
  • Gramatica, P., Chirico, N., Papa, E., Cassani, S., & Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 34(24), 2121–2132. https://doi.org/10.1002/jcc.23361
  • Gramatica, P., Giani, E., & Papa, E. (2007). Statistical external validation and consensus modeling: A QSPR case study for Koc prediction. Journal of Molecular Graphics & Modelling, 25(6), 755–766. https://doi.org/10.1016/j.jmgm.2006.06.005
  • Greenlee, W. J., Allibone, P. L., Perlow, D. S., Patchett, A. A., Ulm, E. H., & Vassil, T. C. (1985). Angiotensin-converting enzyme inhibitors: Synthesis and biological activity of acyltripeptide analogs of enalapril. Journal of Medicinal Chemistry, 28(4), 434–442. https://doi.org/10.1021/jm00382a008
  • Hamming, I., van Goor, H., Turner, A. J., Rushworth, C. A., Michaud, A. A., Corvol, P., & Navis, G. (2008). Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Experimental Physiology, 93(5), 631–638. https://doi.org/10.1113/expphysiol.2007.041855
  • Harit, T., Bellaouchi, R., Rokni, Y., Riahi, A., Malek, F., & Asehraou, A. (2017). Synthesis, characterization, antimicrobial activity, and docking studies of new triazolic tripodal ligands. Chemistry & Biodiversity, 14(12), e1700351. https://doi.org/10.1002/cbdv.201700351
  • Huang, J., & Fan, X. (2011). Why QSAR fails: An empirical evaluation using conventional computational approach. Molecular Pharmaceutics, 8(2), 600–608. https://doi.org/10.1021/mp100423u
  • Igase, M., Strawn, W. B., Gallagher, P. E., Geary, R. L., & Ferrario, C. M. (2005). Angiotensin II AT1 receptors regulate ACE2 and angiotensin-(1–7) expression in the aorta of spontaneously hypertensive rats. American Journal of Physiology. Heart and Circulatory Physiology, 289(3), H1013–H1019. https://doi.org/10.1152/ajpheart.00068.2005
  • Imam, S. S., & Gilani, S. J., editors. (2017). Computer aided drug design: A novel loom to drug discovery.
  • Ishiyama, Y., Gallagher, P. E., Averill, D. B., Tallant, E. A., Brosnihan, K. B., & Ferrario, C. M. (2004). Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension (Dallas, TX: 1979), 43(5), 970–976. https://doi.org/10.1161/01.HYP.0000124667.34652.1a
  • Ivanciuc, O. (1996). HyperChem release 4.5 for windows. Journal of Chemical Information and Computer Sciences, 36(3), 612–614. https://doi.org/10.1021/ci950190a
  • Jawarkar, R. D., Bakal, R. L., Zaki, M. E., Al-Hussain, S., Ghosh, A., Gandhi, A., Mukerjee, N., Samad, A., Masand, V. H., & Lewaa, I. (2022). QSAR based virtual screening derived identification of a novel hit as a SARS CoV-229E 3CLpro Inhibitor: GA-MLR QSAR modeling supported by molecular Docking, molecular dynamics simulation and MMGBSA calculation approaches. Arabian Journal of Chemistry, 15(1), 103499. https://doi.org/10.1016/j.arabjc.2021.103499
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kagami, L. P., das Neves, G. M., Timmers, L F S M. e. d., Caceres, R. A., & Eifler-Lima, V. L. (2020). Geo-Measures: A PyMOL plugin for protein structure ensembles analysis. Computational Biology and Chemistry, 87, 107322. https://doi.org/10.1016/j.compbiolchem.2020.107322
  • Khan, A., Benthin, C., Zeno, B., Albertson, T. E., Boyd, J., Christie, J. D., Hall, R., Poirier, G., Ronco, J. J., Tidswell, M., Hardes, K., Powley, W. M., Wright, T. J., Siederer, S. K., Fairman, D. A., Lipson, D. A., Bayliffe, A. I., & Lazaar, A. L. (2017). A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Critical Care, 21(1). https://doi.org/10.1186/s13054-017-1823-x
  • Krstajic, D., Buturovic, L. J., Leahy, D. E., & Thomas, S. (2014). Cross-validation pitfalls when selecting and assessing regression and classification models. Journal of Cheminformatics, 6(1). https://doi.org/10.1186/1758-2946-6-10
  • Lakshmanan, A. P., Thandavarayan, R. A., Watanabe, K., Sari, F. R., Meilei, H., Giridharan, V. V., Sukumaran, V., Soetikno, V., Arumugam, S., Suzuki, K., & Kodama, M. (2012). Modulation of AT-1R/MAPK cascade by an olmesartan treatment attenuates diabetic nephropathy in streptozotocin-induced diabetic mice. Molecular and Cellular Endocrinology, 348(1), 104–111. https://doi.org/10.1016/j.mce.2011.07.041
  • Liddle, J., Bamborough, P., Barker, M. D., Campos, S., Chung, C.-W., Cousins, R. P. C., Faulder, P., Heathcote, M. L., Hobbs, H., Holmes, D. S., IoaNNou, C., Ramirez-Molina, C., Morse, M. A., Osborn, R., Payne, J. J., Pritchard, J. M., Rumsey, W. L., Tape, D. T., Vicentini, G., Whitworth, C., & Williamson, R. A. (2012). 4-Phenyl-7-azaindoles as potent, selective and bioavailable IKK2 inhibitors demonstrating good in vivo efficacy. Bioorganic & Medicinal Chemistry Letters, 22(16), 5222–5226. https://doi.org/10.1016/j.bmcl.2012.06.065
  • Lin, C.-G., Pan, C.-Y., & Kao, L.-S. (1996). Rab3A delayed catecholamine secretion from bovine adrenal chromaffin cells. Biochemical and Biophysical Research Communications, 221(3), 675–681. https://doi.org/10.1006/bbrc.1996.0655
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Masand, V. H., & Rastija, V. (2017). PyDescriptor: A new PyMOL plugin for calculating thousands of easily understandable molecular descriptors. Chemometrics and Intelligent Laboratory Systems, 169, 12–18. https://doi.org/10.1016/j.chemolab.2017.08.003
  • Masand, V. H., Patil, M. K., El-Sayed, N. N. E., Zaki, M. E., Almarhoon, Z., & Al-Hussain, S. A. (2021). Balanced QSAR analysis to identify the structural requirements of ABBV-075 (Mivebresib) analogues as bromodomain and extraterminal domain (BET) family bromodomain inhibitor. Journal of Molecular Structure, 1229, 129597. https://doi.org/10.1016/j.molstruc.2020.129597
  • McKinley, M. J., Albiston, A. L., Allen, A. M., Mathai, M. L., May, C. N., McAllen, R. M., Oldfield, B. J., Mendelsohn, F. A. O., & Chai, S. Y. (2003). The brain renin–angiotensin system: Location and physiological roles. The International Journal of Biochemistry & Cell Biology, 35(6), 901–918. https://doi.org/10.1016/s1357-2725(02)00306-0
  • Murphy, M. P., LeVine, H., & Lovell, M. A. (2010). Alzheimer’s disease and the amyloid-β peptide. Journal of Alzheimer’s Disease: JAD, 19(1), 311–323. https://doi.org/10.3233/JAD-2010-1221
  • Natesh, R., Schwager, S. L. U., Sturrock, E. D., & Acharya, K. R. (2003). Crystal structure of the human angiotensin-converting enzyme–lisinopril complex. Nature, 421(6922), 551–554. https://doi.org/10.1038/nature01370
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1). https://doi.org/10.1186/1758-2946-3-33
  • Ocaranza, M. P., Godoy, I., Jalil, J. E., Varas, M., Collantes, P., Pinto, M., Roman, M., Ramirez, C., Copaja, M., Diaz-Araya, G., Castro, P., & Lavandero, S. (2006). Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension (Dallas, TX: 1979), 48(4), 572–578. https://doi.org/10.1161/01.HYP.0000237862.94083.45
  • Parida, P. K., Paul, D., & Chakravorty, D. (2020). The natural way forward: Molecular dynamics simulation analysis of phytochemicals from Indian medicinal plants as potential inhibitors of SARS‐CoV‐2 targets. Phytotherapy Research, 34(12), 3420–3433. https://doi.org/10.1002/ptr.6868
  • Paul, M., Poyan Mehr, A., & Kreutz, R. (2006). Physiology of local renin-angiotensin systems. Physiological Reviews, 86(3), 747–803. https://doi.org/10.1152/physrev.00036.2005
  • Priya, R., Sneha, P., Rivera Madrid, R., Doss, C. P., Singh, P., & Siva, R. (2017). Molecular modeling and dynamic simulation of arabidopsis thaliana carotenoid cleavage dioxygenase gene: A comparison with bixa orellana and crocus sativus. Journal of Cellular Biochemistry, 118(9), 2712–2721. https://doi.org/10.1002/jcb.25919
  • Rao, R. B., Fung, G., & Rosales, R. (2008). On the dangers of cross-validation. An experimental evaluation [Paper presentation]. Proceedings of the 2008 SIAM International Conference on Data Mining, p. 588–596. https://doi.org/10.1137/1.9781611972788.54
  • Regulska, K., Stanisz, B., Regulski, M., & Murias, M. (2014). How to design a potent, specific, and stable angiotensin-converting enzyme inhibitor. Drug Discovery Today, 19(11), 1731–1743. https://doi.org/10.1016/j.drudis.2014.06.026
  • Reid, I. A. (1992). Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. The American Journal of Physiology, 262(6 Pt 1), E763–E778. https://doi.org/10.1152/ajpendo.1992.262.6.E763
  • Shapiro, R., Holmquist, B., & Riordan, J. F. (1983). Anion activation of angiotensin converting enzyme: Dependence on nature of substrate. Biochemistry, 22(16), 3850–3857. https://doi.org/10.1021/bi00285a021
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & SheRMan, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Soler, M. J., Ye, M., Wysocki, J., William, J., Lloveras, J., & Batlle, D. (2009). Localization of ACE2 in the renal vasculature: Amplification by angiotensin II type 1 receptor blockade using telmisartan. American Journal of Physiology. Renal Physiology, 296(2), F398–F405. https://doi.org/10.1152/ajprenal.90488.2008
  • Soubrier, F., Alhenc-Gelas, F., Hubert, C., Allegrini, J., John, M., Tregear, G., & Corvol, P. (1988). Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proceedings of the National Academy of Sciences of the United States of America, 85(24), 9386–9390. https://doi.org/10.1073/pnas.85.24.9386
  • Sparks, M. A., Crowley, S. D., Gurley, S. B., et al. (2014). Classical renin‐angiotensin system in kidney physiology. Comprehensive Physiology, 1201–1228.
  • Sukumaran, V., Tsuchimochi, H., Tatsumi, E., Shirai, M., & Pearson, J. T. (2017). Azilsartan ameliorates diabetic cardiomyopathy in young db/db mice through the modulation of ACE-2/ANG 1–7/Mas receptor cascade. Biochemical Pharmacology, 144, 90–99. https://doi.org/10.1016/j.bcp.2017.07.022
  • Sukumaran, V., Veeraveedu, P. T., Gurusamy, N., Lakshmanan, A. P., Yamaguchi, K., Ma, M., Suzuki, K., Nagata, M., Takagi, R., KODama, M., & Watanabe, K. (2012). Olmesartan attenuates the development of heart failure after experimental autoimmune myocarditis in rats through the modulation of ANG 1–7 mas receptor. Molecular and Cellular Endocrinology, 351(2), 208–219. https://doi.org/10.1016/j.mce.2011.12.010
  • Sukumaran, V., Veeraveedu, P. T., Gurusamy, N., Yamaguchi, K., Lakshmanan, A. P., Ma, M., Suzuki, K., Kodama, M., & Watanabe, K. (2011). Cardioprotective effects of telmisartan against heart failure in rats induced by experimental autoimmune myocarditis through the modulation of angiotensin-converting enzyme-2/angiotensin 1-7/mas receptor axis. International Journal of Biological Sciences, 7(8), 1077–1092. https://doi.org/10.7150/ijbs.7.1077
  • Tian, M., Zhu, D., Xie, W., & Shi, J. (2012). Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Letters, 586(20), 3737–3745. https://doi.org/10.1016/j.febslet.2012.09.004
  • Tipnis, S. R., Hooper, N. M., Hyde, R., Karran, E., Christie, G., & Turner, A. J. (2000). A human homolog of angiotensin-converting enzyme. The Journal of Biological Chemistry, 275(43), 33238–33243. https://doi.org/10.1074/jbc.M002615200
  • Toukmaji, A. Y., & Board, J. A. (1996). Ewald summation techniques in perspective: A survey. Computer Physics Communications, 95(2–3), 73–92. https://doi.org/10.1016/0010-4655(96)00016-1
  • Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22(1), 69–77. https://doi.org/10.1002/qsar.200390007
  • Vaduganathan, M., Vardeny, O., Michel, T., McMurray, J. J. V., Pfeffer, M. A., & Solomon, S. D. (2020). Renin–angiotensin–aldosterone system inhibitors in patients with covid-19. The New England Journal of Medicine, 382(17), 1653–1659. https://doi.org/10.1056/NEJMsr2005760
  • Vuille-dit-Bille, R. N., Camargo, S. M., Emmenegger, L., Sasse, T., Kummer, E., Jando, J., Hamie, Q. M., Meier, C. F., Hunziker, S., Forras-Kaufmann, Zs. o. fia., Kuyumcu, S., Fox, M., Schwizer, W., Fried, M., Lindenmeyer, M., Götze, O., & Verrey, F. (2015). Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids, 47(4), 693–705. https://doi.org/10.1007/s00726-014-1889-6
  • Wang, F., & Zhou, B. (2020). Investigation of angiotensin-I-converting enzyme (ACE) inhibitory tri-peptides: A combination of 3D-QSAR and molecular docking simulations. RSC Advances, 10(59), 35811–35819. https://doi.org/10.1039/d0ra05119e
  • Wang, X., Wang, J., Lin, Y., Ding, Y., Wang, Y., Cheng, X., & Lin, Z. (2011). QSAR study on angiotensin-converting enzyme inhibitor oligopeptides based on a novel set of sequence information descriptors. Journal of Molecular Modeling, 17(7), 1599–1606. https://doi.org/10.1007/s00894-010-0862-x
  • Wu, S., Qi, W., Su, R., Li, T., Lu, D., & He, Z. (2014). CoMFA and CoMSIA analysis of ACE-inhibitory, antimicrobial and bitter-tasting peptides. European Journal of Medicinal Chemistry, 84, 100–106. https://doi.org/10.1016/j.ejmech.2014.07.015
  • Yim, H. E., & Yoo, K. H. (2008). Renin-angiotensin system - considerations for hypertension and kidney. Electrolyte & Blood Pressure, 6(1), 42. https://doi.org/10.5049/EBP.2008.6.1.42
  • Zhong, J.-C., Ye, J.-Y., Jin, H.-Y., Yu, X., Yu, H.-M., Zhu, D.-L., Gao, P.-J., Huang, D.-Y., Shuster, M., Loibner, H., Guo, J.-M., Yu, X.-Y., Xiao, B.-X., Gong, Z.-H., Penninger, J. M., & Oudit, G. Y. (2011). Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. Regulatory Peptides, 166(1–3), 90–97. https://doi.org/10.1016/j.regpep.2010.09.005
  • Zhu, D., Shi, J., Zhang, Y., Wang, B., Liu, W., Chen, Z., & Tong, Q. (2011). Central angiotensin II stimulation promotes β amyloid production in sprague dawley rats. PLoS One, 6(1), e16037. https://doi.org/10.1371/journal.pone.0016037

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.