260
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Antimalarial potential, LC–MS secondary metabolite profiling and computational studies of Zingiber officinale

, ORCID Icon, , , , ORCID Icon, , , & show all
Pages 2570-2585 | Received 25 Oct 2022, Accepted 17 Apr 2023, Published online: 28 Apr 2023

References

  • Abelian, A., Dybek, M., Wallach, J., Gaye, B., & Adejare, A. (2021). Pharmaceutical chemistry. In Remington (pp. 105–128). Academic Press.
  • Adesida, S. A., Odediran, S. A., & Elujoba, A. A. (2021). Investigation on the antimalarial properties of Plumeria alba Linn (apocynaceae) cultivated in Nigeria. Nigerian Journal of Natural Products and Medicine, 25(1), 34–42. https://doi.org/10.4314/njnpm.v25i1.2
  • Adeyoju, E. O., Ajayi, C. O., Adepiti, A. O., & Elujoba, A. A. (2022). Comparative in vivo antimalarial activities of aqueous and methanol extracts of MAMA powder-A herbal antimalarial preparation. Journal of Ethnopharmacology, 283, 114686. https://doi.org/10.1016/j.jep.2021.114686
  • Ajaiyeoba, E. O., Abiodun, O. O., Falade, M. O., Ogbole, N. O., Ashidi, J. S., Happi, C. T., & Akinboye, D. O. (2006). In vitro cytotoxicity studies of 20 plants used in Nigerian antimalarial ethnomedicine. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology, 13(4), 295–298. https://doi.org/10.1016/j.phymed.2005.01.015
  • Aladesanmi, A. J., Odiba, O. E., Odediran, S. A., & Oriola, A. O. (2022). Antiplasmodial activities of the stem bark extract of Artocarpus altilis Forsberg. African Journal of Infectious Diseases, 16(2S), 33–45. https://doi.org/10.21010/Ajidv16i2S.5
  • Ali, A. M. A., El-Nour, M. E. M., & Yagi, S. M. (2018). Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal, Genetic Engineering & Biotechnology, 16(2), 677–682. https://doi.org/10.1016/j.jgeb.2018.03.003
  • Awotuya, I. O., Fakola, E. G., Olusola, A. J., Olanudun, E. A., Bello, O. I., Ogunremi, B. I., Gboyero, F. O., Adesida, S. A., & Faloye, K. O. (2022). Exploring the protein tyrosine phosphatase 1B inhibitory potentials of naturally occurring Brazilin-type homoisoflavonoids: A computational approach. Chemistry Africa, 5(5), 1493–1502. https://doi.org/10.1007/s42250-022-00415-3
  • Aye, M., M., Aung, H. T., Sein, M. M., & Armijos, C. (2019). A review on the phytochemistry, medicinal properties and pharmacological activities of 15 selected Myanmar medicinal plants. Molecules, 24(2), 293. https://doi.org/10.3390/molecules24020293
  • Ayeni, A. O., Akinyele, O. F., Hosten, E. C., Fakola, E. G., Olalere, J. T., Egharevba, G. O., & Watkins, G. M. (2020). Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl) piperazin-1-yl) methyl)-5-methylphenol–A Mannich base. Journal of Molecular Structure, 1219, 128539. https://doi.org/10.1016/j.molstruc.2020.128539
  • Balogun, T. A., Omoboyowa, D. A., & Saibu, O. A. (2020). In silico anti-malaria activity of quinolone compounds against Plasmodium falciparum dihydrofolate reductase (pfDHFR). International Journal of Biochemistry Research & Review, 29(8), 10–17.
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Bedane, K. G., Zühlke, S., & Spiteller, M. (2020). Bioactive constituents of Lobostemon fruticosus: Anti-inflammatory properties and quantitative analysis of samples from different places in South Africa. South African Journal of Botany, 131, 174–180. https://doi.org/10.1016/j.sajb.2020.02.016
  • Bhaumik, P., Gustchina, A., & Wlodawer, A. (2012). Structural studies of vacuolar plasmepsins. Biochimica et biophysica acta, 1824(1), 207–223. https://doi.org/10.1016/j.bbapap.2011.04.008
  • Bhavani, K., Renuga, S., Muthu, S., & Sankara Narayanan, K. (2015). Quantum mechanical study and spectroscopic (FT-IR, FT-Raman, 13C, 1H) study, first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of 2-acetoxybenzoic acid by density functional methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 1260–1268. https://doi.org/10.1016/j.saa.2014.10.012
  • Bhowmik, D., Tripathi, K. K., Chandira, M. R., & Kumar, K. P. (2010). Zingiber officinale the herbal and traditional medicine and its therapeutically importance. Research Journal of Pharmacognosy and Phytochemistry, 2(2), 102–110.
  • Biruksew, A., Zeynudin, A., Alemu, Y., Golassa, L., Yohannes, M., Debella, A., Urge, G., De Spiegeleer, B., & Suleman, S. (2018). Zingiber Officinale Roscoe and Echinops Kebericho Mesfin showed antiplasmodial activities against Plasmodium berghei in a dosedependent manner in Ethiopia. Ethiopian Journal of Health Sciences, 28(5). https://doi.org/10.4314/ejhs.v28i5.17
  • Brillatz, T., Kubo, M., Takahashi, S., Jozukuri, N., Takechi, K., Queiroz, E. F., Marcourt, L., Allard, P.-M., Fish, R., Harada, K., Ishizawa, K., Crawford, A. D., Fukuyama, Y., & Wolfender, J.-L. (2020). Metabolite profiling of Javanese ginger Zingiber purpureum and identification of antiseizure metabolites via a low-cost open-source Zebrafish bioassay-guided isolation. Journal of Agricultural and Food Chemistry, 68(30), 7904–7915. https://doi.org/10.1021/acs.jafc.0c02641
  • Bulbul, M. Z., Hosen, M. A., Ferdous, J., Chowdhury, T. S., Misbah, M. M., & Kawsar, S. (2021). DFT study, physicochemical, molecular docking, and ADMET predictions of some modified uridine derivatives. International Journal of New Chemistry, 8(1), 88–110.
  • Cator, L. J., Lynch, P. A., Read, A. F., & Thomas, M. B. (2012). Do malaria parasites manipulate mosquitoes? Trends in Parasitology, 28(11), 466–470. https://doi.org/10.1016/j.pt.2012.08.004
  • Chen, C. C., Kuo, M. C., Wu, C. M., & Ho, C. T. (1986). Pungent compounds of ginger (Zingiber officinale Roscoe) extracted by liquid carbon dioxide. Journal of Agricultural and Food Chemistry, 34(3), 477–480. https://doi.org/10.1021/jf00069a027
  • Chen, J., Sun, J., Prinz, R. A., Li, Y., & Xu, X. (2018). Gingerenone A sensitizes the insulin receptor and increases glucose uptake by inhibiting the activity of p70 S6 kinase. Molecular Nutrition & Food Research, 62(23), 1800709. https://doi.org/10.1002/mnfr.201800709
  • Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M., & Savidge, T. C. (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing. Science Advances, 2(3), e1501240. https://doi.org/10.1126/sciadv.1501240
  • Chugh, M., Sundararaman, V., Kumar, S., Reddy, V. S., Siddiqui, W. A., Stuart, K. D., & Malhotra, P. (2013). Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proceedings of the National Academy of Sciences of the United States of America, 110(14), 5392–5397. https://doi.org/10.1073/pnas.1218412110
  • Domingo, L. R., Ríos-Gutiérrez, M., & Pérez, P. (2016). Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 21(6), 748. https://doi.org/10.3390/molecules21060748
  • Endo, K., Kanno, E., & Oshima, Y. (1990). Structures of antifungal diarylheptenones, gingerenones A, B, C and isogingerenone B, isolated from the rhizomes of Zingiber officinale. Phytochemistry, 29(3), 797–799. https://doi.org/10.1016/0031-9422(90)80021-8
  • Etim, O. E., Bassey, U. E., Akpakpan, E. I., & Udofia, I. E. (2018). Prophylactic, Suppressive and Curative Antiplasmodial Potentials of Methanol Root Extract of Napoleona imperialis in Plasmodium berghei berghei Infected Male Albino Mice. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS), 13(1), 73–77.
  • Faloye, K. O., Bekono, B. D., Fakola, E. G., Ayoola, M. D., Bello, O. I., Olajubutu, O. G., Owoseeni, O. D., Mahmud, S., Alqarni, M., Al Awadh, A. A., Alshahrani, M. M., & Obaidullah, A. J. (2021). Elucidating the glucokinase activating potentials of naturally occurring prenylated flavonoids: An explicit computational approach. Molecules, 26(23), 7211. https://doi.org/10.3390/molecules26237211
  • Ganesan, A. (2008). The impact of natural products upon modern drug discovery. Current Opinion in Chemical Biology, 12(3), 306–317. https://doi.org/10.1016/j.cbpa.2008.03.016
  • Grabowski, S. J. (2020). Intramolecular hydrogen bond energy and its decomposition—O–H··· O interactions. Crystals, 11(1), 5. https://doi.org/10.3390/cryst11010005
  • Hasan, M. M., Khan, Z., Chowdhury, M. S., Khan, M. A., Moni, M. A., & Rahman, M. H. (2022). In silico molecular docking and ADME/T analysis of Quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases. Informatics in Medicine Unlocked, 29, 100894. https://doi.org/10.1016/j.imu.2022.100894
  • Hymete, A., Iversen, T. H., Rohloff, J., & Erko, B. (2005). Screening of Echinops ellenbeckii and Echinops longisetus for biological activities and chemical constituents. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 12(9), 675–679. https://doi.org/10.1016/j.phymed.2004.01.013
  • Hussein, Y. T., & Azeez, Y. H. (2021). DFT analysis and in silico exploration of drug-likeness, toxicity prediction, bioactivity score, and chemical reactivity properties of the urolithins. Journal of Biomolecular Structure and Dynamics, 51(10), 640–653.
  • Iqbal, S., Potharaju, R., Naveen, S., Lokanath, N. K., Mohanakrishnan, A. K., & Gunasekaran, K. (2022). Design, crystal structure determination, molecular dynamic simulation and MMGBSA calculations of novel p38-alpha MAPK inhibitors for combating Alzheimer’s disease. Journal of Biomolecular Structure & Dynamics, 40(13), 6114–6127. https://doi.org/10.1080/07391102.2021.1877197
  • Janjua, M. R. S. A., Mahmood, A., Nazar, M. F., Yang, Z., & Pan, S. (2014). Electronic absorption spectra and nonlinear optical properties of ruthenium acetylide complexes: A DFT study toward the designing of new high NLO response compounds. Acta Chimica Slovenica, 61(2), 382–390.
  • Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological Reviews, 293(1), 230–252. https://doi.org/10.1111/imr.12807
  • Kaushik, N. K., Bagavan, A., Rahuman, A. A., Mohanakrishnan, D., Kamaraj, C., Elango, G., Zahir, A. A., & Sahal, D. (2013). Antiplasmodial potential of selected medicinal plants from eastern Ghats of South India. Experimental Parasitology, 134(1), 26–32. https://doi.org/10.1016/j.exppara.2013.01.021
  • Kim, H. J., Son, J. E., Kim, J. H., Lee, C. C., Yang, H., Yaghmoor, S. S., Ahmed, Y., Yousef, J. M., Abualnaja, K. O., Al-Malki, A. L., Kumosani, T. A., Kim, J. H., Yoon Park, J. H., Lee, C. Y., Kim, J.-E., & Lee, K. W. (2018). Gingerenone A attenuates monocyte‐endothelial adhesion via suppression of I Kappa B kinase phosphorylation. Journal of Cellular Biochemistry, 119(1), 260–268. https://doi.org/10.1002/jcb.26138
  • Kyei, L. K., Gasu, E. N., Ampomah, G. B., Mensah, J. O., & Borquaye, L. S. (2022). An in silico study of the interactions of alkaloids from Cryptolepis sanguinolenta with Plasmodium falciparum dihydrofolate reductase and dihydroorotate dehydrogenase. Journal of Chemistry, 2022, 1–26. https://doi.org/10.1155/2022/5314179
  • Lee, H. R., Lee, J. H., Park, C. S., Ra, K. R., Ha, J. S., Cha, M. H., Kim, S. N., Choi, Y., Hwang, J., & Nam, J. S. (2014). Physicochemical properties and antioxidant capacities of different parts of ginger (Zingiber officinale Roscoe). Journal of the Korean Society of Food Science and Nutrition, 43(9), 1369–1379. https://doi.org/10.3746/jkfn.2014.43.9.1369
  • Liu, P. (2017). Plasmepsin: Function, characterization and targeted antimalarial drug development. In Natural remedies in the fight against parasites (183–218).
  • Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive compounds and bioactivities of ginger (Zingiber officinale Roscoe). Foods, 8(6), 185. https://doi.org/10.3390/foods8060185
  • McNaught, A. D., & Wilkinson, A. (1997). IUPAC: Compendium of chemical terminology. 2nd ed. "Gold Book" Blackwell Scientific Publications.
  • Mohs, R. C., & Greig, N. H. (2017). Drug discovery and development: Role of basic biological research. Alzheimer’s & Dementia (New York, N. Y.), 3(4), 651–657. https://doi.org/10.1016/j.trci.2017.10.005
  • Mousavi, S. S., Karami, A., Haghighi, T. M., Tumilaar, S. G., Idroes, R., Mahmud, S., Celik, I., Ağagündüz, D., Tallei, T. E., Emran, T. B., Capasso, & R. Fatimawali. (2021). In silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of SARS-CoV-2. Molecules, 26(18), 5724., https://doi.org/10.3390/molecules26185724
  • Mukherjee, P., Pradhan, A., Shah, F., Tekwani, B. L., & Avery, M. A. (2008). Structural insights into the Plasmodium falciparum histone deacetylase 1 (PfHDAC-1): A novel target for the development of antimalarial therapy. Bioorganic & Medicinal Chemistry, 16(9), 5254–5265. https://doi.org/10.1016/j.bmc.2008.03.005
  • Mumit, M. A., Pal, T. K., Alam, M. A., Islam, M. A. A. A. A., Paul, S., & Sheikh, M. C. (2020). DFT studies on vibrational and electronic spectra, HOMO–LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2, 4, 5-trimethoxyphenylmethylene) hydrazinecarbodithioate. Journal of Molecular Structure, 1220, 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  • Obi-Egbedi, N. O., Essien, K. E., Obot, I. B., & Ebenso, E. E. (2011). 1, 2-Diaminoanthraquinone as corrosion inhibitor for mild steel in hydrochloric acid: Weight loss and quantum chemical study. International Journal of Electrochemical Science. 6, 913–930.
  • Odediran, S. A., Elujoba, A. A., & Adebajo, A. C. (2014). Influence of formulation ratio of the plant components on the antimalarial properties of MAMA decoction. Parasitology Research, 113(5), 1977–1984. https://doi.org/10.1007/s00436-014-3848-2
  • Olajubutu, O. G., Ogunremi, B. I., Adewole, A. H., Awotuya, O. I., Fakola, E. G., Anyim, G., & Faloye, K. O. (2022). Topical anti-inflammatory activity of Petiveria alliacea, chemical profiling and computational investigation of phytoconstituents identified from its active fraction. Chemistry Africa, 5(3), 557–565. https://doi.org/10.1007/s42250-022-00339-y
  • Olanlokun, J. O., Olotu, A. F., David, O. M., Idowu, T. O., Soliman, E. M., & Olorunsogo, O. O. (2019). A novel compound purified from Alstonia boonei inhibits Plasmodium falciparum lactate dehydrogenase and plasmepsin II. Journal of Biomolecular Structure & Dynamics, 37(8), 2193–2200. https://doi.org/10.1080/07391102.2018.1483840
  • Ogboye, R. M., Patil, R. B., Famuyiwa, S. O., & Faloye, K. O. (2022). Novel α-amylase and α-glucosidase inhibitors from selected Nigerian antidiabetic plants: An in silico approach. Journal of Biomolecular Structure & Dynamics, 40(14), 6340–6349. https://doi.org/10.1080/07391102.2021.1883480
  • Otunola, G. A., Oloyede, O. B., Oladiji, A. T., & Afolayan, A. J. (2010). Comparative analysis of the chemical composition of three spices–Allium sativum L. Zingiber officinale Rosc. and Capsicum frutescens L. commonly consumed in Nigeria. African Journal of Biotechnology, 9(41), 6927–6931.
  • Ou-Yang, S. S., Lu, J. Y., Kong, X. Q., Liang, Z. J., Luo, C., & Jiang, H. (2012). Computational drug discovery. Acta Pharmacologica Sinica, 33(9), 1131–1140. https://doi.org/10.1038/aps.2012.109
  • Owoseeni, O. D., Patil, R. B., Phage, P. M., Ogboye, R. M., Ayoola, M. D., Famuyiwa, S. O., Gboyero, F. O., Ndinteh, D. T., & Faloye, K. O. (2022). Computational assessment of xanthones from African medicinal plants as aldose reductase inhibitors. Computation, 10(9), 146. https://doi.org/10.3390/computation10090146
  • Peters, W. (1965). Drug resistance in Plasmodium berghei. I. Chloroquine resistance. Experimental Parasitology, 17(1), 80–89. https://doi.org/10.1016/0014-4894(65)90012-3
  • Peng, F., Tao, Q., Wu, X., Dou, H., Spencer, S., Mang, C., Xu, L., Sun, L., Zhao, Y., Li, H., Zeng, S., Liu, G., & Hao, X. (2012). Cytotoxic, cytoprotective and antioxidant effects of isolated phenolic compounds from fresh ginger. Fitoterapia, 83(3), 568–585. https://doi.org/10.1016/j.fitote.2011.12.028
  • Prasad, S., & Tyagi, A. K. (2015). Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterology Research and Practice, 2015, 1–11. https://doi.org/10.1155/2015/142979
  • Plowe, C. V., Djimde, A., Bouare, M., Doumbo, O., & Wellems, T. E. (1995). Pyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in Africa. The American Journal of Tropical Medicine and Hygiene, 52(6), 565–568. https://doi.org/10.4269/ajtmh.1995.52.565
  • Raheem, A. H., Al-Shejyri, K. J., & Al-Bermany, E. D. (2012). Density functional theory calculations for methylbenzene molecules group. British Journal of Science, 5, 57–64.
  • Rampogu, S., Baek, A., Gajula, R. G., Zeb, A., Bavi, R. S., Kumar, R., Kim, Y., Kwon, Y. J., & Lee, K. W. (2018). Ginger (Zingiber officinale) phytochemicals—gingerenone-A and shogaol inhibit SaHPPK: Molecular docking, molecular dynamics simulations and in vitro approaches. Annals of Clinical Microbiology and Antimicrobials, 17(1), 1–15. https://doi.org/10.1186/s12941-018-0266-9
  • Rudrapal, M., & Chetia, D. (2017). Plant flavonoids as potential source of future antimalarial leads. Systematic Reviews in Pharmacy, 8(1), 13–18. https://doi.org/10.5530/srp.2017.1.4
  • Ryley, J. F., & Peters, W. (1970). The antimalarial activity of some quinolone esters. Annals of Tropical Medicine and Parasitology, 64(2), 209–222. https://doi.org/10.1080/00034983.1970.11686683
  • Saraf, P., Tripathi, P. N., Tripathi, M. K., Tripathi, A., Verma, H., Waiker, D. K., Singh, R., & Shrivastava, S. K. (2022). Novel 5, 6-diphenyl-1, 2, 4-triazine-3-thiol derivatives as dual COX-2/5-LOX inhibitors devoid of cardiotoxicity. Bioorganic Chemistry, 129, 106147. https://doi.org/10.1016/j.bioorg.2022.106147
  • Schaduangrat, N., Lampa, S., Simeon, S., Gleeson, M. P., Spjuth, O., & Nantasenamat, C. (2020). Towards reproducible computational drug discovery. Journal of Cheminformatics, 12(1), 30. https://doi.org/10.1186/s13321-020-0408-x
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Sharma, M., & Chauhan, P. M. (2012). Dihydrofolate reductase as a therapeutic target for infectious diseases: Opportunities and challenges. Future Medicinal Chemistry, 4(10), 1335–1365. https://doi.org/10.4155/fmc.12.68
  • Sharma, P., Joshi, T., Joshi, T., Chandra, S., & Tamta, S. (2020). In silico screening of potential antidiabetic phytochemicals from Phyllanthus emblica against therapeutic targets of type 2 diabetes. Journal of Ethnopharmacology, 248, 112268. https://doi.org/10.1016/j.jep.2019.112268
  • Shamshad, H., Bakri, R., & Mirza, A. Z. (2022). Dihydrofolate reductase, thymidylate synthase, and serine hydroxy methyltransferase: Successful targets against some infectious diseases. Molecular Biology Reports, 49(7), 6659–6691. https://doi.org/10.1007/s11033-022-07266-8
  • Subramanian, N., Sundaraganesan, N., & Jayabharathi, J. (2010). Molecular structure, spectroscopic (FT-IR, FT-Raman, NMR, UV) studies and first-order molecular hyperpolarizabilities of 1, 2-bis (3-methoxy-4-hydroxybenzylidene) hydrazine by density functional method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 76(2), 259–269. https://doi.org/10.1016/j.saa.2010.03.033
  • Tohma, H., Gülçin, İ., Bursal, E., Gören, A. C., Alwasel, S. H., & Köksal, E. (2017). Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. Journal of Food Measurement and Characterization, 11(2), 556–566. https://doi.org/10.1007/s11694-016-9423-z
  • Tona, L., Mesia, K., Ngimbi, N. P., Chrimwami, B., Cimanga, K., Bruyne, T. D., Apers, S., Hermans, N., Totte, J., Pieters, L., Vlietinck., & A. J. Okond’ahoka. (2001). In-vivo antimalarial activity of Cassia occidentalism Morinda morindoides and Phyllanthus niruri. Annals of Tropical Medicine & Parasitology, 95(1), 47–57., https://doi.org/10.1080/00034983.2001.11813614
  • Treben, M. (1986). Health through God’s pharmacy – advice and experiences with medicinal plants, 6. Australia: Wilhelm Ennsthater, Steys, Publ.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461.
  • Vandebroek, I., & Picking, D. (2020). Zingiber officinale Roscoe (Zingiberaceae). In Popular medicinal plants in Portland and Kingston, Jamaica, pp. 235–245. Springer.
  • Verpoorte, R., Frederich, M., Delaude, C., Angenot, L., Dive, G., Thépenier, P., Jacquier, M. J., Zèches-Hanrot, M., Lavaud, C., & Nuzillard, J. M. (2010). Moandaensine, a dimeric indole alkaloid from Strychnos moandaensis (Loganiaceae). Phytochemistry Letters, 3(2), 100–103. https://doi.org/10.1016/j.phytol.2010.02.005
  • World Health Organization. (2021). World Malaria Report 2013.
  • World Health Organization. (2022, July 26). Malaria. https://www.who.int/news-room/fact-sheets/detail/malaria
  • Yadav, M. K., Tripathi, M. K., & Yadav, S. (2021). Discovery of novel inhibitors targeting Plasmodium knowlesi dihydrofolate reductase using molecular docking and molecular dynamics simulation. Microbial Pathogenesis, 161(Pt A), 105214. https://doi.org/10.1016/j.micpath.2021.105214
  • Yusuf, A. A., Lawal, B., Abubakar, A. N., Berinyuy, E. B., Omonije, Y. O., Umar, S. I., Shebe, M. N., & Alhaji, Y. M. (2018). In-vitro antioxidants, antimicrobial and toxicological evaluation of Nigerian Zingiber officinale. Clinical Phytoscience, 4(1), 1–8. https://doi.org/10.1186/s40816-018-0070-2
  • Yu, T. J., Tang, J. Y., Shiau, J. P., Hou, M. F., Yen, C. H., Ou-Yang, F., Chen, C. Y., & Chang, H. W. (2022). Gingerenone A Induces Antiproliferation and Senescence of Breast Cancer Cells. Antioxidants, 11(3), 587. https://doi.org/10.3390/antiox11030587
  • Yuthavong, Y., Yuvaniyama, J., Chitnumsub, P., Vanichtanankul, J., Chusacultanachai, S., Tarnchompoo, B., Vilaivan, T., & Kamchonwongpaisan, S. (2005). Malarial (Plasmodium falciparum) dihydrofolate reductase-thymidylate synthase: Structural basis for antifolate resistance and development of effective inhibitors. Parasitology, 130(Pt 3), 249–259. https://doi.org/10.1017/s003118200400664x
  • Zareen, S., Khan, S. N., Adnan, M., Haleem, S., Ali, R., & Alnomasy, S. F. (2021). Antiplasmodial potential of Eucalyptus obliqua leaf methanolic extract against Plasmodium vivax: An in vitro study. Open Chemistry, 19(1), 1023–1028. https://doi.org/10.1515/chem-2021-0091
  • Zhong, W., Zhu, J., Yi, J., Zhao, C., Shi, Y., Kang, Q., Huang, J., Hao, L., & Lu, J. (2022). Biochemical analysis reveals the systematic response of motion sickness mice to ginger (Zingiber officinale) extract’s amelioration effect. Journal of Ethnopharmacology, 290, 115077. https://doi.org/10.1016/j.jep.2022.115077

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.