1,412
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Escherichia coli FtsZ molecular dynamics simulations

Pages 2653-2666 | Received 16 Jan 2023, Accepted 19 Apr 2023, Published online: 09 May 2023

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  • Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. The Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Borkotoky, S., & Murali, A. (2018). A computational assessment of ph-dependent differential interaction of T7 lysozyme with T7 RNA polymerase. BMC Structural Biology, 17(1). https://doi.org/10.1186/s12900-017-0077-9
  • Buske, P. J., & Levin, P. A. (2013). A flexible C-terminal linker is required for proper Ftsz assembly in vitro and cytokinetic ring formation in vivo. Molecular Microbiology, 89(2), 249–263. https://doi.org/10.1111/mmi.12272
  • Buske, P. J., Mittal, A., Pappu, R. V., & Levin, P. A. (2015). An intrinsically disordered linker plays a critical role in bacterial cell division. Seminars in Cell & Developmental Biology, 37, 3–10. https://doi.org/10.1016/j.semcdb.2014.09.017
  • Carballo-Pacheco, M., & Strodel, B. (2017). Comparison of force fields for Alzheimer’s A B42: A case study for intrinsically disordered proteins. Protein Science : A Publication of the Protein Society, 26(2), 174–185. https://doi.org/10.1002/pro.3064
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davlieva, M., & Shamoo, Y. (2009). Structure and biochemical characterization of an adenylate kinase originating from the psychrophilic organism Marinibacillus marinus. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 65(Pt 8), 751–756. https://doi.org/10.1107/S1744309109024348
  • DePaul, A. J., Thompson, E. J., Patel, S. S., Haldeman, K., & Sorin, E. J. (2010). Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Research, 38(14), 4856–4867. https://doi.org/10.1093/nar/gkq134
  • Fiser, A., Do, R. K., & Sali, A. (2000). Modeling of loops in protein structures. Protein Science : A Publication of the Protein Society, 9(9), 1753–1773. https://doi.org/10.1110/ps.9.9.1753
  • Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., & Bairoch, A. (2003). ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31(13), 3784–3788. https://doi.org/10.1093/nar/gkg563
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Hockney, R. W., Goel, S. P., & Eastwood, J. (1974). Quiet high resolution computer models of a plasma. Journal of Computational Physics, 14(2), 148–158. https://doi.org/10.1016/0021-9991(74)90010-2
  • Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomolecular Concepts, 1(3–4), 271–283. https://doi.org/10.1515/bmc.2010.022
  • Hsin, J., Gopinathan, A., & Huang, K. C. (2012). Nucleotide-dependent conformations of Ftsz dimers and force generation observed through molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 109(24), 9432–9437. https://doi.org/10.1073/pnas.1120761109
  • VMD. (n.d.a). https://www.ks.uiuc.edu/Research/vmd/
  • VMD. (n.d.b). https://www.ks.uiuc.edu/Research/vmd/vmd-1.7.1/ug/node30.html
  • Ishida, T., & Kinoshita, K. (2007). Prdos: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35(Web Server issue), W460–W464. https://doi.org/10.1093/nar/gkm363
  • Jakhmola, S., Hazarika, Z., Jha, A. N., & Jha, H. C. (2022). In silico analysis of antiviral phytochemicals efficacy against Epstein–Barr virus glycoprotein H. Journal of Biomolecular Structure & Dynamics, 40(12), 5372–5385. https://doi.org/10.1080/07391102.2020.1871074
  • Lu, C., Reedy, M., & Erickson, H. P. (2000). Straight and curved conformations of FtsZ are regulated by GTP hydrolysis. Journal of Bacteriology, 182(1), 164–170. https://doi.org/10.1128/JB.182.1.164-170.2000
  • Lunin, V. V., Munger, C., Wagner, J., Ye, Z., Cygler, M., & Sacher, M. (2004). The structure of the MAPK Scaffold, MP1, bound to its partner, P14: A complex with a critical role in endosomal map kinase signaling. The Journal of Biological Chemistry, 279(22), 23422–23430. https://doi.org/10.1074/jbc.M401648200
  • Marti-Renom, M. A., Stuart, A., Fiser, A., Sánchez, R., Melo, F., & Sali, A. (2000). Comparative protein structure modeling of genes and genomes. Annual Review of Biophysics and Biomolecular Structure, 29, 291–325. https://doi.org/10.1146/annurev.biophys.29.1.291
  • Matsui, T., Yamane, J., Mogi, N., Yamaguchi, H., Takemoto, H., Yao, M., & Tanaka, I. (2012). Structural reorganization of the bacterial cell-division protein Ftsz from Staphylococcus aureus. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 9), 1175–1188. https://doi.org/10.1107/S0907444912022640
  • Meagher, K. L., Redman, L. T., & Carlson, H. A. (2003). Development of polyphosphate parameters for use with the AMBER force field. Journal of Computational Chemistry, 24(9), 1016–1025. https://doi.org/10.1002/jcc.10262
  • Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J., & Somers, W. S. (2000). The bacterial cell-division protein Zipa and its interaction with an Ftsz fragment revealed by X-ray crystallography. The EMBO Journal, 19(13), 3179–3191. https://doi.org/10.1093/emboj/19.13.3179
  • Natarajan, K., & Senapati, S. (2013). Probing the conformational flexibility of monomeric Ftsz in GTP-bound, GDP-bound, and nucleotide-free states. Biochemistry, 52(20), 3543–3551. https://doi.org/10.1021/bi400170f
  • Nos’e, S., & Klein, M. L. (1983). Constant pressure molecular dynamics for molecular systems. Molecular Physics, 50(5), 1055–1076. https://doi.org/10.1080/00268978300102851
  • Oliva, M. A., Cordell, S. C., & Löwe, J. (2004). Structural insights into FtsZ protofilament formation. Nature Structural & Molecular Biology, 11(12), 1243–1250. https://doi.org/10.1038/nsmb855
  • Oliva, M. A., Trambaiolo, D., & Löwe, J. (2007). Structural insights into the conformational variability of FtsZ. Journal of Molecular Biology, 373(5), 1229–1242.
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Paul, D., Basak, P., & Ghosh Dastidar, S. (2022). Remote communication between unstructured and structured regions of bcl-2 tunes its ligand binding capacity: Mechanistic insights. Computational Biology and Chemistry, 100, 107736. https://doi.org/10.1016/j.compbiolchem.2022.107736
  • Sali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of Molecular Biology, 234(3), 779–815. https://doi.org/10.1006/jmbi.1993.1626
  • Sorin, E. J., & Pande, V. S. (2005). Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophysical Journal, 88(4), 2472–2493.
  • Vaughan, S., Wickstead, B., Gull, K., & Addinall, S. (2004). Molecular evolution of FtsZ protein sequences encoded within the genomes of archaea, bacteria, and eukaryota. Journal of Molecular Evolution, 58(1), 19–29. https://doi.org/10.1007/s00239-003-2523-5
  • Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science : A Publication of the Protein Society, 12(5), 1073–1086. https://doi.org/10.1110/ps.0236803