149
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Virtual screening, structure based pharmacophore mapping, and molecular simulation studies of pyrido[2,3-d]pyrimidines as selective thymidylate synthase inhibitors

, ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 14197-14211 | Received 06 Dec 2022, Accepted 04 Feb 2023, Published online: 08 May 2023

References

  • Acosta, P., Insuasty, B., Abonia, R., Gutierrez, M., & Quiroga, J. (2017). Synthesis of novel 7-aryl and 7-spiropyrazolo [4′, 3′: 5, 6] pyrido [2, 3-d] pyrimidine derivatives and their study as AChE inhibitors. Molecular Diversity, 21(4), 943–955. https://doi.org/10.1007/s11030-017-9774-3
  • Ahn, J.-Y., Lee, J.-S., Min, H.-Y., & Lee, H.-Y. (2015). Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer. Oncotarget, 6(32), 32622–32633. https://doi.org/10.18632/oncotarget.5327
  • Andersen, H. C. (1983). Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. Journal of Computational Physics. 52(1), 24–34. https://doi.org/10.1016/0021-9991(83)90014-1
  • Backus, H., Wouters, D., Ferreira, C., Van Houten, V., Brakenhoff, R., Pinedo, H., & Peters, G. (2003). Thymidylate synthase inhibition triggers apoptosis via caspases-8 and-9 in both wild-type and mutant p53 colon cancer cell lines. European Journal of Cancer (Oxford, England : 1990), 39(9), 1310–1317. https://doi.org/10.1016/s0959-8049(03)00204-1
  • Bhosale, S., & Kumar, A. (2021). Screening of phytoconstituents of Andrographis paniculata against various targets of Japanese encephalitis virus: An in-silico and in-vitro target-based approach. Current Research in Pharmacology and Drug Discovery, 2, 100043. https://doi.org/10.1016/j.crphar.2021.100043
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. https://doi.org/10.3322/caac.21492
  • Burón Pust, A., Alison, R., Blanks, R., Pirie, K., Gaitskell, K., Barnes, I., Gathani, T., Reeves, G., Beral, V., & Green, J, Million Women Study Collaborators. (2017). Heterogeneity of colorectal cancer risk by tumour characteristics: Large prospective study of UK women. International Journal of Cancer, 140(5), 1082–1090. https://doi.org/10.1002/ijc.30527
  • Cardinale, D., Salo-Ahen, O. M. H., Guaitoli, G., Ferrari, S., Venturelli, A., Franchini, S., Battini, R., Ponterini, G., Wade, R. C., & Costi, M. P. (2010). Design and characterization of a mutation outside the active site of human thymidylate synthase that affects ligand binding. Protein Engineering, Design & Selection: PEDS, 23(2), 81–89. https://doi.org/10.1093/protein/gzp075
  • Case, D., Berryman, J., Betz, R., Cerutti, D., Cheatham, I. I. I., T., Darden, T., & Goetz, A. (2015). AMBER 2016. University of California. 2016.
  • Chen, D., Jansson, A., Sim, D., Larsson, A., & Nordlund, P. (2017). Structural analyses of human thymidylate synthase reveal a site that may control conformational switching between active and inactive states. The Journal of Biological Chemistry, 292(32), 13449–13458. https://doi.org/10.1074/jbc.M117.787267
  • Chen, C., & Kong, A. (1995). Trends Pharmacol. Sci, 16, 182–187.
  • DeGoey, D. A., Betebenner, D. A., Grampovnik, D. J., Liu, D., Pratt, J. K., Tufano, M. D., He, W., Krishnan, P., Pilot-Matias, T. J., Marsh, K. C., Molla, A., Kempf, D. J., & Maring, C. J. (2013). Discovery of pyrido [2, 3-d] pyrimidine-based inhibitors of HCV NS5A. Bioorganic & Medicinal Chemistry Letters, 23(12), 3627–3630. https://doi.org/10.1016/j.bmcl.2013.04.009
  • Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Research. 35(Web Server), W522–W525. https://doi.org/10.1093/nar/gkm276
  • Douard, R., Moutereau, S., Pernet, P., Chimingqi, M., Allory, Y., Manivet, P., Conti, M., Vaubourdolle, M., Cugnenc, P.-H., & Loric, S. (2006). Sonic Hedgehog–dependent proliferation in a series of patients with colorectal cancer. Surgery, 139(5), 665–670. https://doi.org/10.1016/j.surg.2005.10.012
  • Ferrari, S., Losasso, V., & Costi, M. P. (2008). Sequence‐based identification of specific drug target regions in the thymidylate synthase enzyme family. ChemMedChem. 3(3), 392–401. https://doi.org/10.1002/cmdc.200700215
  • Gangjee, A., Vidwans, A., Elzein, E., McGuire, J. J., Queener, S. F., & Kisliuk, R. L. (2001). Synthesis, antifolate, and antitumor activities of classical and nonclassical 2-amino-4-oxo-5-substituted-pyrrolo [2, 3-d] pyrimidines. Journal of Medicinal Chemistry, 44(12), 1993–2003. https://doi.org/10.1021/jm0100382
  • Gao, P., Zhang, L., Sun, L., Huang, T., Tan, J., Zhang, J., Zhou, Z., Zhao, T., Menéndez-Arias, L., Pannecouque, C., Clercq, E. D., Zhan, P., & Liu, X. (2017). 1-Hydroxypyrido [2, 3-d] pyrimidin-2 (1H)-ones as novel selective HIV integrase inhibitors obtained via privileged substructure-based compound libraries. Bioorganic & Medicinal Chemistry, 25(20), 5779–5789. https://doi.org/10.1016/j.bmc.2017.09.006
  • Garg, D., Henrich, S., Salo-Ahen, O. M., Myllykallio, H., Costi, M. P., & Wade, R. C. (2010). Novel approaches for targeting thymidylate synthase to overcome the resistance and toxicity of anticancer drugs. Journal of Medicinal Chemistry, 53(18), 6539–6549. https://doi.org/10.1021/jm901869w
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Gonen, N., & Assaraf, Y. G. (2012). Antifolates in cancer therapy: Structure, activity and mechanisms of drug resistance. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 15(4), 183–210. https://doi.org/10.1016/j.drup.2012.07.002
  • Guo, Y., Liu, Y., Hu, N., Yu, D., Zhou, C., Shi, G., Zhang, B., Wei, M., Liu, J., Luo, L., Tang, Z., Song, H., Guo, Y., Liu, X., Su, D., Zhang, S., Song, X., Zhou, X., Hong, Y., … Wang, Z. (2019). Discovery of zanubrutinib (BGB-3111), a novel, potent, and selective covalent inhibitor of Bruton’s tyrosine kinase. Journal of Medicinal Chemistry, 62(17), 7923–7940. https://doi.org/10.1021/acs.jmedchem.9b00687
  • Jackman, A., & Calvert, A. (1995). Folate-based thymidylate synthase inhibitors as anticancer drugs. Annals of Oncology: Official Journal of the European Society for Medical Oncology, 6(9), 871–881. https://doi.org/10.1093/oxfordjournals.annonc.a059353
  • Jacob K. S., Ganguly, S., Kumar, P., Poddar, R., & Kumar, A. (2017). Homology model, molecular dynamics simulation and novel pyrazole analogs design of Candida albicans CYP450 lanosterol 14 α-demethylase, a target enzyme for antifungal therapy. Journal of Biomolecular Structure & Dynamics, 35(7), 1446–1463. https://doi.org/10.1080/07391102.2016.1185380
  • Jakalian, A., Bush, B. L., Jack, D. B., & Bayly, C. I. (2000). Fast, efficient generation of high‐quality atomic charges. AM1‐BCC model: I. Method. Journal of Computational Chemistry, 21(2), 132–146. https://doi.org/10.1002/(SICI)1096-987X(20000130)21:2<132::AID-JCC5>3.0.CO;2-P
  • Jarvis, T. R., Chughtai, B., & Kaplan, S. A. (2015). Testosterone and benign prostatic hyperplasia. Asian Journal of Andrology, 17(2), 212–216. https://doi.org/10.4103/1008-682X.140966
  • Kandagalla, S., Novak, J., Shekarappa, S. B., Grishina, M. A., Potemkin, V. A., & Kumbar, B. (2022). Exploring potential inhibitors against Kyasanur forest disease by utilizing molecular dynamics simulations and ensemble docking. Journal of Biomolecular Structure & Dynamics, 40(24), 13547–13563. https://doi.org/10.1080/07391102.2021.1990131
  • Kant, K., Rawat, R., Bhati, V., Bhosale, S., Sharma, D., Banerjee, S., & Kumar, A. (2021). Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis. Journal of Biomolecular Structure & Dynamics, 39(4), 1203–1212. https://doi.org/10.1080/07391102.2020.1726820
  • Kornmann, M., Schwabe, W., Sander, S., Kron, M., Sträter,., Polat, S., Jr, & Schramm, H. (2003). Thymidylate synthase and dihydropyrimidine dehydrogenase mRNA expression levels: Predictors for survival in colorectal cancer patients receiving adjuvant 5-fluorouracil. Clin Cancer Res, 9(11), 4116–4124.
  • Kumar, A., Kalra, S., Jangid, K., & Jaitak, V. (2022a). Flavonoids as P-glycoprotein inhibitors for multidrug resistance in cancer: An in-silico approach. Journal of Biomolecular Structure and Dynamics., 1–13. https://doi.org/10.1080/07391102.2022.2123390
  • Kumar, A., Singh, A. K., Singh, H., Thareja, S., & Kumar, P. (2022b). Regulation of thymidylate synthase: An approach to overcome 5-FU resistance in colorectal cancer. Medical Oncology (Northwood, London, England), 40(1), 3. https://doi.org/10.1007/s12032-022-01864-z
  • Kumar, A., Singh, A. K., Thareja, S., & Kumar, P. (2023). A Review of Pyridine and Pyrimidine Derivatives as Anti-MRSA Agents, Antiinfect. Anti-Infective Agents, 21(2), e050722206610. https://doi.org/10.2174/2211352520666220705085733
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Machado, M. R., & Pantano, S. (2020). Split the charge difference in two! A rule of thumb for adding proper amounts of ions in MD simulations. Journal of Chemical Theory and Computation, 16(3), 1367–1372. https://doi.org/10.1021/acs.jctc.9b00953
  • Maurya, S. K., Maurya, A. K., Mishra, N., & Siddique, H. R. (2020). Virtual screening, ADME/T, and binding free energy analysis of anti-viral, anti-protease, and anti-infectious compounds against NSP10/NSP16 methyltransferase and main protease of SARS CoV-2. Journal of Receptor and Signal Transduction Research, 40(6), 605–612. https://doi.org/10.1080/10799893.2020.1772298
  • Meng, E. C., Pettersen, E. F., Couch, G. S., Huang, C. C., & Ferrin, T. E. (2006). Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics. 7(1), 1–10. https://doi.org/10.1186/1471-2105-7-339
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Navyashree, V., Kant, K., & Kumar, A. (2021). Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1404–1416. https://doi.org/10.1080/07391102.2020.1731603
  • Novak, J., Rimac, H., Kandagalla, S., Grishina, M. A., & Potemkin, V. A. (2021). Can natural products stop the SARS-CoV-2 virus? A docking and molecular dynamics study of a natural product database. Future Medicinal Chemistry, 13(4), 363–378. https://doi.org/10.4155/fmc-2020-0248
  • Opo, F. A., Rahman, M. M., Ahammad, F., Ahmed, I., Bhuiyan, M. A., & Asiri, A. M. (2021). Structure based pharmacophore modeling, virtual screening, molecular docking and ADMET approaches for identification of natural anti-cancer agents targeting XIAP protein. Scientific Reports, 11(1), 1–17. https://doi.org/10.1038/s41598-021-83626-x
  • Pauly, I., Kumar Singh, A., Kumar, A., Singh, Y., Thareja, S., Kamal, M. A., Verma, A., & Kumar, P. (2022). Current insights and molecular docking studies of the drugs under clinical trial as RdRp inhibitors in COVID-19 treatment. Current Pharmaceutical Design, 28(46), 3677–3705. https://doi.org/10.2174/1381612829666221107123841
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera: A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phan, J., Koli, S., Minor, W., Dunlap, R. B., Berger, S. H., & Lebioda, L. (2001a). Human thymidylate synthase is in the closed conformation when complexed with dUMP and raltitrexed, an antifolate drug. Biochemistry, 40(7), 1897–1902. https://doi.org/10.1021/bi002413i
  • Phan, J., Steadman, D. J., Koli, S., Ding, W. C., Minor, W., Dunlap, R. B., Berger, S. H., & Lebioda, L. (2001b). Structure of human thymidylate synthase suggests advantages of chemotherapy with noncompetitive inhibitors. The Journal of Biological Chemistry, 276(17), 14170–14177. https://doi.org/10.1074/jbc.M009493200
  • Popat, S., Matakidou, A., & Houlston, R. S. (2004). Thymidylate synthase expression and prognosis in colorectal cancer: A systematic review and meta-analysis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 22(3), 529–536. https://doi.org/10.1200/JCO.2004.05.064
  • Quiroga, J., Romo, P. E., Ortiz, A., Isaza, J. H., Insuasty, B., Abonia, R., Nogueras, M., & Cobo, J. (2016). Synthesis, structures, electrochemical studies and antioxidant activity of 5-aryl-4-oxo-3, 4, 5, 8-tetrahydropyrido [2, 3-d] pyrimidine-7-carboxylic acids. J. Mol. Struct,.1120, 294–301. https://doi.org/10.1016/j.molstruc.2016.05.045
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sakamoto, T., Koga, Y., Hikota, M., Matsuki, K., Mochida, H., Kikkawa, K., Fujishige, K., Kotera, J., Omori, K., Morimoto, H., & Yamada, K. (2015). 8-(3-Chloro-4-methoxybenzyl)-8H-pyrido [2, 3-d] pyrimidin-7-one derivatives as potent and selective phosphodiesterase 5 inhibitors. Bioorganic & Medicinal Chemistry Letters, 25(7), 1431–1435. https://doi.org/10.1016/j.bmcl.2015.02.041
  • Salo‐Ahen, O. M., & Wade, R. C. (2011). The active–inactive transition of human thymidylate synthase: Targeted molecular dynamics simulations. Proteins, 79(10), 2886–2899. https://doi.org/10.1002/prot.23123
  • Salonga, D., Danenberg, K. D., Johnson, M., Metzger, R., Groshen, S., Tsao-Wei, D. D., & Diasio, R. B. (2000). Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin. Cancer Res, 6(4), 1322–1327.
  • Sherapura, A., Malojirao, V. H., Thirusangu, P., Sharath, B. S., Kandagalla, S., Vigneshwaran, V., Novak, J., Ranganatha, L., Ramachandra, Y. L., Baliga, S. M., Khanum, S. A., & Prabhakar, B. T. (2022). Anti-neoplastic pharmacophore benzophenone-1 coumarin (BP-1C) targets JAK2 to induce apoptosis in lung cancer. Apoptosis : An International Journal on Programmed Cell Death, 27(1-2), 49–69. https://doi.org/10.1007/s10495-021-01699-5
  • Siegel, R. L., Miller, K. D., Goding Sauer, A., Fedewa, S. A., Butterly, L. F., Anderson, J. C., Cercek, A., Smith, R. A., & Jemal, A. (2020). Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians, 70(3), 145–164. https://doi.org/10.3322/caac.21601
  • Siegel, R. L., Torre, L. A., Soerjomataram, I., Hayes, R. B., Bray, F., Weber, T. K., & Jemal, A. (2019). Global patterns and trends in colorectal cancer incidence in young adults. Gut, 68(12), 2179–2185. https://doi.org/10.1136/gutjnl-2019-319511
  • Singh, A. K., Novak, J., Kumar, A., Singh, H., Thareja, S., Pathak, P., Grishina, M., Verma, A., Yadav, J. P., Khalilullah, H., Pathania, V., Nandanwar, H., Jaremko, M., Emwas, A.-H., & Kumar, P. (2022). Gaussian field-based 3D-QSAR and molecular simulation studies to design potent pyrimidine–sulfonamide hybrids as selective BRAF V600E inhibitors. RSC Advances, 12(46), 30181–30200. https://doi.org/10.1039/d2ra05751d
  • Taddia, L., D'Arca, D., Ferrari, S., Marraccini, C., Severi, L., Ponterini, G., Assaraf, Y. G., Marverti, G., & Costi, M. P. (2015). Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer Chemotherapy, 23, 20–54. https://doi.org/10.1016/j.drup.2015.10.003
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Wang, B., Lei, X., Tian, W., Perez-Rathke, A., Tseng, Y.-Y., & Liang, J. (2022). SeqMapPDB: A standalone pipeline to identify representative structures of protein sequences and mapping residue indices in real-time at proteome scale. arXiv, 2202, 11551.
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Wang, W., Wolf, R., Caldwell, J. W., Kollman, P. A., & Case, J. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Xie, T., Geng, J., Wang, Y., Wang, L., Huang, M., Chen, J., Zhang, K., Xue, L., Liu, X., Mao, X., Chen, Y., Wang, Q., Dai, T., Ren, L., Yu, H., Wang, R., Chen, L., Chen, C., & Chu, X. (2017). FOXM1 evokes 5-fluorouracil resistance in colorectal cancer depending on ABCC10. Oncotarget, 8(5), 8574–8589. https://doi.org/10.18632/oncotarget.14351
  • Yadav, P., & Shah, K. (2021). An overview on synthetic and pharmaceutical prospective of pyrido [2, 3‐d] pyrimidines scaffold. Chemical Biology & Drug Design, 97(3), 633–648. https://doi.org/10.1111/cbdd.13800

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.