238
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Interaction and simulation studies suggest the possible molecular targets of intrinsically disordered amyloidogenic antimicrobial peptides in Acinetobacter baumannii

, , & ORCID Icon
Pages 2747-2764 | Received 16 Jan 2023, Accepted 20 Apr 2023, Published online: 05 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Almeida, Z. L., & Brito, R. M. (2020). Structure and aggregation mechanisms in amyloids. Molecules, 25(5), 1195. https://doi.org/10.3390/molecules25051195
  • Amera, G. M., Khan, R. J., Pathak, A., Jha, R. K., Jain, M., Muthukumaran, J., & Singh, A. K. (2020). Structure based drug designing and discovery of promising lead molecules against UDP-N-acetylenolpyruvoylglucosamine reductase (MurB): A potential drug target in multi-drug resistant Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 100, 107675. https://doi.org/10.1016/j.jmgm.2020.107675
  • Amera, G. M., Khan, R. J., Pathak, A., Kumar, A., & Singh, A. K. (2019). Structure based in-silico study on UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2, 6-diaminopimelate ligase (MurE) from Acinetobacter baumannii as a drug target against nosocomial infections. Informatics in Medicine Unlocked, 16, 100216. https://doi.org/10.1016/j.imu.2019.100216
  • Argudo, P. G., & Giner-Casares, J. J. (2021). Folding and self-assembly of short intrinsically disordered peptides and protein regions. Nanoscale Advances, 3(7), 1789–1812. https://doi.org/10.1039/d0na00941e
  • Asokan, G. V., Ramadhan, T., Ahmed, E., & Sanad, H. (2019). WHO global priority pathogens list: A bibliometric analysis of Medline-PubMed for knowledge mobilization to infection prevention and control practices in Bahrain. Oman Medical Journal, 34(3), 184–193. https://doi.org/10.5001/omj.2019.37
  • Au, A., Lee, H., Ye, T., Dave, U., & Rahman, A. (2021). Bacteriophages: Combating antimicrobial resistance in food-borne bacteria prevalent in agriculture. Microorganisms, 10(1), 46. https://doi.org/10.3390/microorganisms10010046
  • Barksdale, S. M., Hrifko, E. J., & van Hoek, M. L. (2017). Cathelicidin antimicrobial peptide from Alligator mississippiensis has antibacterial activity against multi-drug resistant Acinetobacter baumanii and Klebsiella pneumoniae. Developmental and Comparative Immunology, 70, 135–144. 2017/05/01/https://doi.org/10.1016/j.dci.2017.01.011
  • Bednarska, N. G., van Eldere, J., Gallardo, R., Ganesan, A., Ramakers, M., Vogel, I., Baatsen, P., Staes, A., Goethals, M., Hammarström, P., Nilsson, K. P. R., Gevaert, K., Schymkowitz, J., & Rousseau, F. (2016). Protein aggregation as an antibiotic design strategy. Molecular Microbiology, 99(5), 849–865. https://doi.org/10.1111/mmi.13269
  • Benfield, A. H., & Henriques, S. T. (2020). Mode-of-action of antimicrobial peptides: Membrane disruption vs. intracellular mechanisms. Frontiers in Medical Technology, 2, 610997. https://doi.org/10.3389/fmedt.2020.610997
  • Bhattacharya, A., Tejero, R., & Montelione, G. T. (2007). Evaluating protein structures determined by structural genomics consortia. Proteins, 66(4), 778–795. https://doi.org/10.1002/prot.21165
  • Brives, C., & Pourraz, J. (2020). Phage therapy as a potential solution in the fight against AMR: Obstacles and possible futures. Palgrave Communications, 6(1), 1–11. https://doi.org/10.1057/s41599-020-0478-4
  • Cardoso, M. H., Meneguetti, B. T., Costa, B. O., Buccini, D. F., Oshiro, K. G. N., Preza, S. L. E., Carvalho, C. M. E., Migliolo, L., & Franco, O. L. (2019). Non-lytic antibacterial peptides that translocate through bacterial membranes to act on intracellular targets. International Journal of Molecular Sciences, 20(19), 4877.
  • Chatani, E., Yuzu, K., Ohhashi, Y., & Goto, Y. (2021). Current understanding of the structure, stability and dynamic properties of amyloid fibrils. International Journal of Molecular Sciences, 22(9), 4349. https://doi.org/10.3390/ijms22094349
  • Christen, M., Hünenberger, P. H., Bakowies, D., Baron, R., Bürgi, R., Geerke, D. P., Heinz, T. N., Kastenholz, M. A., Kräutler, V., Oostenbrink, C., Peter, C., Trzesniak, D., & van Gunsteren, W. F. (2005). The GROMOS software for biomolecular simulation: GROMOS05. Journal of Computational Chemistry, 26(16), 1719–1751. https://doi.org/10.1002/jcc.20303
  • Clark, R. B. (1996). Imipenem resistance among Acinetobacter baumannii: Association with reduced expression of a 33–36 kDa outer membrane protein. The Journal of Antimicrobial Chemotherapy, 38(2), 245–251. https://doi.org/10.1093/jac/38.2.245
  • Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: A server for the prediction and evaluation of "hot spots" of aggregation in polypeptides. BMC Bioinformatics, 8(1), 65. https://doi.org/10.1186/1471-2105-8-65
  • Domalaon, R., G Zhanel, G., & Schweizer, F. (2016). Short antimicrobial peptides and peptide scaffolds as promising antibacterial agents. Current Topics in Medicinal Chemistry, 16(11), 1217–1230. https://doi.org/10.2174/1568026615666150915112459
  • Falanga, A., & Galdiero, S. (2017). Emerging therapeutic agents on the basis of naturally occurring antimicrobial peptides. Amino Acids, Peptides and Proteins, 42, 190–227.
  • Feng, X., Sambanthamoorthy, K., Palys, T., & Paranavitana, C. (2013). The human antimicrobial peptide LL-37 and its fragments possess both antimicrobial and antibiofilm activities against multidrug-resistant Acinetobacter baumannii. Peptides, 49, 131–137. https://doi.org/10.1016/j.peptides.2013.09.007
  • Galzitskaya, O. V. (2021). Exploring amyloidogenicity of peptides from ribosomal S1 protein to develop novel AMPs. Frontiers in Molecular Biosciences, 8, 705069. https://doi.org/10.3389/fmolb.2021.705069
  • Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, 582779. https://doi.org/10.3389/fmicb.2020.582779
  • Iyer, R., & Delcour, A. H. (1997). Complex inhibition of OmpF and OmpC bacterial porins by polyamines. The Journal of Biological Chemistry, 272(30), 18595–18601. https://doi.org/10.1074/jbc.272.30.18595
  • Jaeyong, C., In-Sok, H., Choi, H., Hwang, J. H., Hwang, J.-S., & Lee, D. G. (2012). The novel biological action of antimicrobial peptides via apoptosis induction. Journal of Microbiology and Biotechnology, 22(11), 1457–1466.
  • Jaśkiewicz, M., Neubauer, D., Kazor, K., Bartoszewska, S., & Kamysz, W. (2019). Antimicrobial activity of selected antimicrobial peptides against planktonic culture and biofilm of Acinetobacter baumannii. Probiotics and Antimicrobial Proteins, 11(1), 317–324. https://doi.org/10.1007/s12602-018-9444-5
  • Jung, C.-J., Liao, Y.-D., Hsu, C.-C., Huang, T.-Y., Chuang, Y.-C., Chen, J.-W., Kuo, Y.-M., & Chia, J.-S. (2021). Identification of potential therapeutic antimicrobial peptides against Acinetobacter baumannii in a mouse model of pneumonia. Scientific Reports, 11(1), 7318. https://doi.org/10.1038/s41598-021-86844-5
  • Kagan, B. L., Jang, H., Capone, R., Teran Arce, F., Ramachandran, S., Lal, R., & Nussinov, R. (2012). Antimicrobial properties of amyloid peptides. Molecular Pharmaceutics, 9(4), 708–717. https://doi.org/10.1021/mp200419b
  • Kang, S.-J., Park, S. J., Mishig-Ochir, T., & Lee, B.-J. (2014). Antimicrobial peptides: Therapeutic potentials. Expert Review of anti-Infective Therapy, 12(12), 1477–1486. https://doi.org/10.1586/14787210.2014.976613
  • Kaushik, V., Sharma, S., Tiwari, M., & Tiwari, V. (2022). Antipersister strategies against stress induced bacterial persistence. Microbial Pathogenesis, 164, 105423. Mar https://doi.org/10.1016/j.micpath.2022.105423
  • Kaushik, V., Tiwari, M., Joshi, R., & Tiwari, V. (2022). Therapeutic strategies against potential antibiofilm targets of multidrug-resistant Acinetobacter baumannii. Journal of Cellular Physiology, 237(4), 2045–2063. Apr https://doi.org/10.1002/jcp.30683
  • Kaushik, V., Tiwari, M., & Tiwari, V. (2022). Interaction of RecA mediated SOS response with bacterial persistence, biofilm formation, and host response. International Journal of Biological Macromolecules, 217, 931–943. https://doi.org/10.1016/j.ijbiomac.2022.07.176
  • Ke, P. C., Zhou, R., Serpell, L. C., Riek, R., Knowles, T. P. J., Lashuel, H. A., Gazit, E., Hamley, I. W., Davis, T. P., Fändrich, M., Otzen, D. E., Chapman, M. R., Dobson, C. M., Eisenberg, D. S., & Mezzenga, R. (2020). Half a century of amyloids: Past, present and future. Chemical Society Reviews, 49(15), 5473–5509. https://doi.org/10.1039/C9CS00199A
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Last, N. B., & Miranker, A. D. (2013). Common mechanism unites membrane poration by amyloid and antimicrobial peptides. Proceedings of the National Academy of Sciences of the United States of America, 110(16), 6382–6387. https://doi.org/10.1073/pnas.1219059110
  • Latendorf, T., Gerstel, U., Wu, Z., Bartels, J., Becker, A., Tholey, A., & Schröder, J.-M. (2019). Cationic intrinsically disordered antimicrobial peptides (CIDAMPs) represent a new paradigm of innate defense with a potential for novel anti-infectives. Scientific Reports, 9(1), 3331. https://doi.org/10.1038/s41598-019-39219-w
  • Le, C.-F., Fang, C.-M., & Sekaran, S. D. (2017). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial Agents and Chemotherapy, 61(4), e02340-16. https://doi.org/10.1128/AAC.02340-16
  • Lee, E. Y., Srinivasan, Y., de Anda, J., Nicastro, L. K., Tükel, Ç., & Wong, G. C. L. (2020). Functional reciprocity of amyloids and antimicrobial peptides: Rethinking the role of supramolecular assembly in host defense, immune activation, and inflammation. Frontiers in Immunology, 11, 1629. https://doi.org/10.3389/fimmu.2020.01629
  • Lee, J.-Y., Yang, S.-T., Kim, H.-J., Lee, S.-K., Jung, H.-H., Shin, S.-Y., & Kim, J.-I. (2009). Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide. BMB Reports Korean Society for Biochemistry and Molecular Biology, 42(9), 586–592. https://doi.org/10.5483/BMBRep.2009.42.9.586
  • Linding, R., Jensen, L. J., Diella, F., Bork, P., Gibson, T. J., & Russell, R. B. (2003). Nov Protein disorder prediction: Implications for structural proteomics. Structure (London, England : 1993), 11(11), 1453–1459. https://doi.org/10.1016/j.str.2003.10.002
  • Linding, R., Russell, R. B., Neduva, V., & Gibson, T. J. (2003). GlobPlot: Exploring protein sequences for globularity and disorder. Nucleic Acids Research, 31(13), 3701–3708. https://doi.org/10.1093/nar/gkg519
  • Liu, C., Qi, J., Shan, B., & Ma, Y. (2018). Tachyplesin causes membrane instability that kills multidrug-resistant bacteria by inhibiting the 3-ketoacyl carrier protein reductase FabG [original research]. Frontiers in Microbiology, 9, 825. https://doi.org/10.3389/fmicb.2018.00825
  • Liu, C., Shan, B., Qi, J., & Ma, Y. (2017). Systemic responses of multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii following exposure to the antimicrobial peptide cathelicidin-BF imply multiple intracellular targets. Frontiers in Cellular and Infection Microbiology, 7, 466. https://doi.org/10.3389/fcimb.2017.00466
  • Luong, H. X., Kim, D.-H., Lee, B.-J., & Kim, Y.-W. (2018). Effects of lysine-to-arginine substitution on antimicrobial activity of cationic stapled heptapeptides. Archives of Pharmacal Research, 41(11), 1092–1097. Nov https://doi.org/10.1007/s12272-018-1084-5
  • Matsuo, M., Kurokawa, K., Nishida, S., Li, Y., Takimura, H., Kaito, C., Fukuhara, N., Maki, H., Miura, K., Murakami, K., & Sekimizu, K. (2003). Isolation and mutation site determination of the temperature-sensitive murB mutants of Staphylococcus aureus. FEMS Microbiology Letters, 222(1), 107–113. https://doi.org/10.1016/S0378-1097(03)00260-X
  • Micoli, F., Bagnoli, F., Rappuoli, R., & Serruto, D. (2021). The role of vaccines in combatting antimicrobial resistance. Nature Reviews. Microbiology, 19(5), 287–302. https://doi.org/10.1038/s41579-020-00506-3
  • Muta, T., Fujimoto, T., Nakajima, H., & Iwanaga, S. (1990). Tachyplesins isolated from hemocytes of Southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas): Identification of a new tachyplesin, tachyplesin III, and a processing intermediate of its precursor. Journal of Biochemistry, 108(2), 261–266. https://doi.org/10.1093/oxfordjournals.jbchem.a123191
  • Neshani, A., Sedighian, H., Mirhosseini, S. A., Ghazvini, K., Zare, H., & Jahangiri, A. (2020). Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microbial Pathogenesis, 146, 104238. https://doi.org/10.1016/j.micpath.2020.104238
  • Nicolas, P. (2009). Multifunctional host defense peptides: Intracellular-targeting antimicrobial peptides. The FEBS Journal, 276(22), 6483–6496. Nov https://doi.org/10.1111/j.1742-4658.2009.07359.x
  • Oliveira, J. T. A., Souza, P. F. N., Vasconcelos, I. M., Dias, L. P., Martins, T. F., Van Tilburg, M. F., Guedes, M. I. F., & Sousa, D. O. B. (2019). Mo-CBP(3)-PepI, Mo-CBP(3)-PepII, and Mo-CBP(3)-PepIII are synthetic antimicrobial peptides active against human pathogens by stimulating ROS generation and increasing plasma membrane permeability. Biochimie, 157, 10–21. Feb https://doi.org/10.1016/j.biochi.2018.10.016
  • O'Neill, J. (2016). Tackling drug-resistant infections globally. Final Report and Recommendations.
  • Osman, K., Evangelopoulos, D., Basavannacharya, C., Gupta, A., McHugh, T. D., Bhakta, S., & Gibbons, S. (2012). An antibacterial from Hypericum acmosepalum inhibits ATP-dependent MurE ligase from Mycobacterium tuberculosis. International Journal of Antimicrobial Agents, 39(2), 124–129. https://doi.org/10.1016/j.ijantimicag.2011.09.018
  • Park, C. B., Kim, H. S., & Kim, S. C. (1998). Mechanism of action of the antimicrobial peptide buforin II: Buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochemical and Biophysical Research Communications, 244(1), 253–257. https://doi.org/10.1006/bbrc.1998.8159
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, J., Siriwardena, T. N., Stach, M., Tinguely, R., Kasraian, S., Luzzaro, F., Leib, S. L., Darbre, T., Reymond, J.-L., & Endimiani, A. (2015). In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 59(12), 7915–7918. https://doi.org/10.1128/AAC.01853-15
  • Rajamuthiah, R., Jayamani, E., Conery, A. L., Fuchs, B. B., Kim, W., Johnston, T., Vilcinskas, A., Ausubel, F. M., & Mylonakis, E. (2015). A defensin from the model beetle Tribolium castaneum acts synergistically with telavancin and daptomycin against multidrug resistant Staphylococcus aureus. PLoS One, 10(6), e0128576. https://doi.org/10.1371/journal.pone.0128576
  • Rima, M., Rima, M., Fajloun, Z., Sabatier, J.-M., Bechinger, B., & Naas, T. (2021). Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 10(9), 1095. https://doi.org/10.3390/antibiotics10091095
  • Romeo, D., Skerlavaj, B., Bolognesi, M., & Gennaro, R. (1988). Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. Journal of Biological Chemistry, 263(20), 9573–9575. https://doi.org/10.1016/S0021-9258(19)81553-3
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Roy, R., Tiwari, M., Donelli, G., & Tiwari, V. (2018). Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence, 9(1), 522–554. Jan 1 https://doi.org/10.1080/21505594.2017.1313372
  • Rumbo, C., Tomás, M., Fernández Moreira, E., Soares, N. C., Carvajal, M., Santillana, E., Beceiro, A., Romero, A., & Bou, G. (2014). The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infection and Immunity, 82(11), 4666–4680. https://doi.org/10.1128/IAI.02034-14
  • Sarkar, T., Chetia, M., & Chatterjee, S. (2021). Antimicrobial peptides and proteins: From nature’s reservoir to the laboratory and beyond. Frontiers in Chemistry, 9, 432. https://doi.org/10.3389/fchem.2021.691532
  • Schneider, T., Kruse, T., Wimmer, R., Wiedemann, I., Sass, V., Pag, U., Jansen, A., Nielsen, A. K., Mygind, P. H., Raventós, D. S., Neve, S., Ravn, B., Bonvin, A. M. J. J., De Maria, L., Andersen, A. S., Gammelgaard, L. K., Sahl, H.-G., & Kristensen, H.-H. (2010). Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II. Science (New York, N.Y.), 328(5982), 1168–1172. https://doi.org/10.1126/science.1185723
  • Selsted, M. E., Harwig, S. S., Ganz, T., Schilling, J. W., & Lehrer, R. I. (1985). Primary structures of three human neutrophil defensins. The Journal of Clinical Investigation, 76(4), 1436–1439. https://doi.org/10.1172/JCI112121
  • Sharma, S., Tiwari, M., & Tiwari, V. (2021). Therapeutic strategies against autophagic escape by pathogenic bacteria. Drug Discovery Today, 26(3), 704–712. Mar https://doi.org/10.1016/j.drudis.2020.12.002
  • Steiner, H., Hultmark, D., Engström, A., Bennich, H., & Boman, H. G. (1981). Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature, 292(5820), 246–248. https://doi.org/10.1038/292246a0
  • Tajbakhsh, M., Akhavan, M., Fallah, F., & Karimi, A. (2018). A recombinant snake cathelicidin derivative peptide: Antibiofilm properties and expression in Escherichia coli. Biomolecules, 8(4), 118. https://doi.org/10.3390/biom8040118
  • Tiwari, M., Joshi, R., & Tiwari, V. (2021). Design of novel hybrid secondary metabolite targets to diguanylate cyclase of Acinetobacter baumannii. FEMS Microbes, 2, xtab017. https://doi.org/10.1093/femsmc/xtab017
  • Tiwari, M., Kumar, P., Tejavath, K. K., & Tiwari, V. (2020). Assessment of molecular mechanism of gallate-polyvinylpyrrolidone-capped hybrid silver nanoparticles against carbapenem-resistant Acinetobacter baumannii. ACS Omega, 5(2), 1206–1213. https://doi.org/10.1021/acsomega.9b03644
  • Tiwari, V. (2019). Post-translational modification of ESKAPE pathogens as a potential target in drug discovery. Drug Discovery Today, 24(3), 814–822. Mar https://doi.org/10.1016/j.drudis.2018.12.005
  • Tiwari, V. (2020). De novo design, retrosynthetic analysis and combinatorial synthesis of a hybrid antiviral (VTAR-01) to inhibit the interaction of SARS-CoV2 spike glycoprotein with human angiotensin-converting enzyme 2. Biology Open, 9(10), bio054056.
  • Tiwari, V. (2022). Pharmacophore screening, denovo designing, retrosynthetic analysis, and combinatorial synthesis of a novel lead VTRA1.1 against RecA protein of Acinetobacter baumannii. Chemical Biology & Drug Design, 99(6), 839–856. https://doi.org/10.1111/cbdd.14037
  • Tiwari, V., & Moganty, R. R. (2014). Conformational stability of OXA-51 β-lactamase explains its role in carbapenem resistance of Acinetobacter baumannii. Journal of Biomolecular Structure & Dynamics, 32(9), 1406–1420. https://doi.org/10.1080/07391102.2013.819789
  • Tiwari, V., Kapil, A., & Moganty, R. R. (2012). Carbapenem-hydrolyzing oxacillinase in high resistant strains of Acinetobacter baumannii isolated from India. Microbial Pathogenesis, 53(2), 81–86. https://doi.org/10.1016/j.micpath.2012.05.004
  • Tiwari, V., Rajeswari, M. R., & Tiwari, M. (2019). Proteomic analysis of iron-regulated membrane proteins identify FhuE receptor as a target to inhibit siderophore-mediated iron acquisition in Acinetobacter baumannii. International Journal of Biological Macromolecules, 125, 1156–1167. Mar 15 https://doi.org/10.1016/j.ijbiomac.2018.12.173
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annual Review of Biophysics, 37(1), 215–246. https://doi.org/10.1146/annurev.biophys.37.032807.125924
  • van der Weide, H., Vermeulen-de Jongh, D. M. C., van der Meijden, A., Boers, S. A., Kreft, D., Ten Kate, M. T., Falciani, C., Pini, A., Strandh, M., Bakker-Woudenberg, I. A. J. M., Hays, J. P., & Goessens, W. H. F. (2019). Antimicrobial activity of two novel antimicrobial peptides AA139 and SET-M33 against clinically and genotypically diverse Klebsiella pneumoniae isolates with differing antibiotic resistance profiles. International Journal of Antimicrobial Agents, 54(2), 159–166. https://doi.org/10.1016/j.ijantimicag.2019.05.019
  • Verma, P., Tiwari, M., & Tiwari, V. (2021). Efflux pumps in multidrug-resistant Acinetobacter baumannii: Current status and challenges in the discovery of efflux pumps inhibitors. Microbial Pathogenesis, 152, 104766. https://doi.org/10.1016/j.micpath.2021.104766
  • Verma, P., Tiwari, M., & Tiwari, V. (2022). Potentiate the activity of current antibiotics by naringin dihydrochalcone targeting the AdeABC efflux pump of multidrug-resistant Acinetobacter baumannii. International Journal of Biological Macromolecules, 217, 592–605. https://doi.org/10.1016/j.ijbiomac.2022.07.065
  • Vila-Farres, X., Garcia de la Maria, C., López-Rojas, R., Pachón, J., Giralt, E., & Vila, J. (2012). In vitro activity of several antimicrobial peptides against colistin-susceptible and colistin-resistant Acinetobacter baumannii. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(4), 383–387. https://doi.org/10.1111/j.1469-0691.2011.03581.x
  • Yan, Y., Tao, H., He, J., & Huang, S.-Y. (2020). The HDOCK server for integrated protein–protein docking. Nature Protocols, 15(5), 1829–1852. https://doi.org/10.1038/s41596-020-0312-x
  • Yang, J., & Zhang, Y. (2015). I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Research, 43(W1), W174–81. https://doi.org/10.1093/nar/gkv342
  • Walsh, I., Seno, F., Tosatto, S. C. E., & Trovato, A. (2014). PASTA 2.0: An improved server for protein aggregation prediction. Nucleic Acids Research, 42(Web Server issue), W301–7. https://doi.org/10.1093/nar/gku399
  • Wang, G., Li, X., & Wang, Z. (2016). APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Research, 44(D1), D1087–D1093. https://doi.org/10.1093/nar/gkv1278
  • Wang, J., Wong, E. S. W., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., Renfree, M. B., Belov, K., & Cocks, B. G. (2011). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One, 6(8), e24030. https://doi.org/10.1371/journal.pone.0024030
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wimley, W. C., & Hristova, K. (2011). Antimicrobial peptides: Successes, challenges and unanswered questions. The Journal of Membrane Biology, 239(1–2), 27–34. https://doi.org/10.1007/s00232-011-9343-0
  • Wright, P. E., & Dyson, H. J. (2015). Intrinsically disordered proteins in cellular signalling and regulation. Nature Reviews. Molecular Cell Biology, 16(1), 18–29. https://doi.org/10.1038/nrm3920
  • Wu, X., Li, Z., Li, X., Tian, Y., Fan, Y., Yu, C., Zhou, B., Liu, Y., Xiang, R., & Yang, L. (2017). Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Design, Development and Therapy, 11, 939–946. https://doi.org/10.2147/DDDT.S107195
  • Xie, R., Zhang, X. D., Zhao, Q., Peng, B., & Zheng, J. (2018). Analysis of global prevalence of antibiotic resistance in Acinetobacter baumannii infections disclosed a faster increase in OECD countries. Emerging Microbes & Infections, 7(1), 1–10. https://doi.org/10.1038/s41426-018-0038-9
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yu, G., Baeder, D. Y., Regoes, R. R., & Rolff, J. (2018). Predicting drug resistance evolution: insights from antimicrobial peptides and antibiotics. 285(1874), 20172687.
  • Zasloff, M. (1987). Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proceedings of the National Academy of Sciences of the United States of America, 84(15), 5449–5453. https://doi.org/10.1073/pnas.84.15.5449

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.