295
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Repurposing the inhibitors of MMP-9 and SGLT-2 against ubiquitin specific protease 30 in Parkinson’s disease: computational modelling studies

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1307-1318 | Received 13 Feb 2023, Accepted 29 Mar 2023, Published online: 03 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). ScienceDirect GROMACS : High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Barodia, S. K., Creed, R. B., & Goldberg, M. S. (2017). Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Research Bulletin, 133, 51–59. https://doi.org/10.1016/j.brainresbull.2016.12.004
  • Bhattacharya, S., Asati, V., Mishra, M., Das, R., Kashaw, V., & Kashaw, S. K. (2021). Integrated computational approach on Sodium-Glucose co-Transporter 2 (SGLT2) Inhibitors for the development of novel antidiabetic agents. Journal of Molecular Structure, 1227, 129511. https://doi.org/10.1016/j.molstruc.2020.129511
  • Caba, C., Mohammadzadeh, A., & Tong, Y. (2022). On the study of deubiquitinases: Using the right tools for the job. Biomol, 12, 1–21.
  • Cheng, F., Li, W., Zhou, Y., Jie, S., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. https://doi.org/10.1021/ci300367a
  • Chu, C. T. (2019). Multiple pathways for mitophagy : A neurodegenerative conundrum for Parkinson’s disease. Neuroscience Letters, 697, 66–71. https://doi.org/10.1016/j.neulet.2018.04.004
  • Clark, E. H., Vázquez, A., Torre, D., Hoshikawa, T., & Briston, T. (2021). Targeting mitophagy in Parkinson’s disease. The Journal of Biological Chemistry, 296, 100209. https://doi.org/10.1074/jbc.REV120.014294
  • De Iuliis, A., Montinaro, E., Fatati, G., Plebani, M., & Colosimo, C. (2022). Diabetes mellitus and Parkinson’s disease: Dangerous liaisons between insulin and dopamine. Neural Regeneration Research, 17(3), 523–533. https://doi.org/10.4103/1673-5374.320965
  • Foltynie, T., & Athauda, D. (2020). Repurposing anti-diabetic drugs for the treatment of Parkinson’s disease: Rationale and clinical experience. In Recent advances in Parkinson’s disease (1st ed., Vol. 252). Elsevier B.V. https://doi.org/10.1016/bs.pbr.2019.10.008
  • Forouzesh, N., & Mishra, N. (2021). An effective MM/GBSA protocol for absolute binding free energy calculations: A case study on SARS-CoV-2 spike protein and the human ACE2 receptor. Molecules, 26(8), 2383. https://doi.org/10.3390/molecules26082383
  • Gersch, M., Gladkova, C., Schubert, A. F., Michel, M. A., Maslen, S., & Komander, D. (2017). Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nature Structural & Molecular Biology, 24(11), 920–930. https://doi.org/10.1038/nsmb.3475
  • Giugliano, D., & Esposito, K. (2019). Class effect for SGLT-2 inhibitors: A tale of 9 drugs. Cardiovascular Diabetology, 18(1), 1–4. https://doi.org/10.1186/s12933-019-0899-9
  • Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2019). ADMET-score – a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/C8MD00472B
  • Halgren, T. A. (1996). Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. Journal of Computational Chemistry, 17(5-6), 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P
  • He, X., Zhang, L., Yao, X., Hu, J., Yu, L., Jia, H., An, R., Liu, Z., & Xu, Y. (2013). Association studies of MMP-9 in Parkinson’s disease and amyotrophic lateral sclerosis. PLoS One, 8(9), e73777. https://doi.org/10.1371/journal.pone.0073777
  • Hochberg, G. K. A., Ecroyd, H., Liu, C., Cox, D., Cascio, D., Sawaya, M. R., Collier, M. P., Stroud, J., Carver, J. A., Baldwin, A. J., Robinson, C. V., Eisenberg, D. S., Benesch, J. L. P., & Laganowsky, A. (2014). The structured core domain of α B-crystallin can prevent amyloid fibrillation and associated toxicity. Proceedings of the National Academy of Sciences, 111(16), 1562–1570. https://doi.org/10.1073/pnas.1322673111
  • Kar, S., & Leszczynski, J. (2020). Expert Opinion on Drug Discovery Open access in silico tools to predict the ADMET profiling of drug candidates ABSTRACT. Expert Opinion on Drug Discovery, 15(12), 1473–1487. https://doi.org/10.1080/17460441.2020.1798926
  • Kemp, M. (2016). Recent advances in the discovery of deubiquitinating enzyme inhibitors. In Progress in medicinal chemistry (1st ed., Vol. 55). Elsevier B.V. https://doi.org/10.1016/bs.pmch.2015.10.002
  • Kluge, A. F., Lagu, B. R., Maiti, P., Jaleel, M., Webb, M., Malhotra, J., Mallat, A., Srinivas, P. A., & Thompson, J. E. (2018). Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. Bioorganic & Medicinal Chemistry Letters, 28(15), 2655–2659. https://doi.org/10.1016/j.bmcl.2018.05.013
  • Krüger, A., Maltarollo, V. G., & Wrenger, C. (2019). ADME profiling in drug discovery and a new path paved on silica. In Drug discovery and development - New advances (pp. 1–31). Intechopen. https://doi.org/10.5772/intechopen.86174
  • Lage-Rupprecht, V., Schultz, B., Dick, J., Namysl, M., Zaliani, A., Gebel, S., Pless, O., Reinshagen, J., Ellinger, B., Ebeling, C., Esser, A., Jacobs, M., Claussen, C., & Hofmann-Apitius, M. (2022). A hybrid approach unveils drug repurposing candidates targeting an Alzheimer pathophysiology mechanism. Patterns (New York, NY), 3(3), 100433. https://doi.org/10.1016/j.patter.2021.100433
  • Lim, K., Joo, J., & Baek, K. (2020). The potential roles of deubiquitinating enzymes in brain diseases. Ageing Research Reviews, 61(April), 101088. https://doi.org/10.1016/j.arr.2020.101088
  • Lionaki, E., Markaki, M., Palikaras, K., & Tavernarakis, N. (2015). Mitochondria, autophagy and age-associated neurodegenerative diseases: New insights into a complex interplay. Biochimica et Biophysica Acta, 1847(11), 1412–1423. https://doi.org/10.1016/j.bbabio.2015.04.010
  • Liu, C. Z., Guo, D. S., Ma, J. J., Dong, L. R., Chang, Q. Q., Yang, H. Q., Liang, K. K., Li, X. H., Yang, D. W., Fan, Y. Y., Gu, Q., Chen, S. Y., & Li, D. S. (2022). Correlation of matrix metalloproteinase 3 and matrix metalloproteinase 9 levels with non-motor symptoms in patients with Parkinson’s disease. Frontiers in Aging Neuroscience, 14, 889257. https://doi.org/10.3389/fnagi.2022.889257
  • Mandal, S., Br, P. K., Alam, T., Tripathi, P. P., & Channappa, B. (2022). Novel imidazole phenoxyacetic acids as inhibitors of USP30 for neuroprotection implication via the ubiquitin-Rho-110 fluorometric assay: Design, synthesis, and in silico and biochemical assays. ACS Chemical Neuroscience, 13(9), 1433–1445. https://doi.org/10.1021/acschemneuro.2c00076
  • Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., Füllgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., Licitra, F., Lopez Ramirez, A., Pavel, M., Puri, C., Renna, M., Ricketts, T., Schlotawa, L., Vicinanza, M., Won, H., … Rubinsztein, D. C. (2017). Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron, 93(5), 1015–1034. https://doi.org/10.1016/j.neuron.2017.01.022
  • Miller, S., & Muqit, M. M. K. (2019). Neuroscience Letters Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neuroscience Letters, 705(April), 7–13. https://doi.org/10.1016/j.neulet.2019.04.029
  • Misra, M. (2013). SGLT2 inhibitors : a promising new therapeutic option for treatment of type 2 diabetes mellitus. Journal of Pharmacy and Pharmacology, 65(3), 317–327. https://doi.org/10.1111/j.2042-7158.2012.01574.x
  • Mondal, S., Adhikari, N., Banerjee, S., Amin, S. A., & Jha, T. (2020). Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. European Journal of Medicinal Chemistry, 194, 112260. https://doi.org/10.1016/j.ejmech.2020.112260
  • Nakamura, N., & Hirose, S. (2008). Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane Nobuhiro Nakamura and Shigehisa Hirose. Molecular Biology of the Cell, 19(5), 1903–1911. https://doi.org/10.1091/mbc.E07
  • Ordureau, A., Paulo, J. A., Zhang, J., An, H., Swatek, K. N., Cannon, J. R., Wan, Q., Komander, D., & Harper, J. W. (2020). Global landscape and dynamics of Parkin and USP30-dependent ubiquitylomes in iNeurons during mitophagic signaling. Molecular Cell, 77(5), 1124–1142.e10. https://doi.org/10.1016/j.molcel.2019.11.013
  • Padmanabhan, S., Polinski, N. K., Menalled, L. B., Baptista, M. A. S., & Fiske, B. K. (2019). The Michael J. Fox Foundation for Parkinson’s research strategy to advance therapeutic development of PINK1 and Parkin. Biomolecules, 9(8), 296. https://doi.org/10.3390/biom9080296
  • Pagano, G., Polychronis, S., Wilson, H., Giordano, B., Ferrara, N., Niccolini, F., & Politis, M. (2018). Diabetes mellitus and Parkinson disease. Neurology, 90(19), E1654–E1662. https://doi.org/10.1212/WNL.0000000000005475
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Phu, L., Rose, C. M., Tea, J. S., Cheung, T. K., Kirkpatrick, D. S., Bingol, B., Phu, L., Rose, C. M., Tea, J. S., Wall, C. E., Verschueren, E., & Cheung, T. K. (2020). Dynamic regulation of mitochondrial import by the ubiquitin system. Molecular Cell, 77(5), 1107–1123.e10. https://doi.org/10.1016/j.molcel.2020.02.012
  • Pickrell, A. M., & Youle, R. J. (2015). The roles of PINK1, Parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron, 85(2), 257–273. https://doi.org/10.1016/j.neuron.2014.12.007
  • Ramachandran, S., & Srivastava, S. K. (2020). Repurposing Pimavanserin, an anti-Parkinson drug for pancreatic cancer therapy. Molecular Therapy Oncolytics, 19(December), 19–32. https://doi.org/10.1016/j.omto.2020.08.019
  • Sánchez-Gómez, A., Díaz, Y., Duarte-Salles, T., Compta, Y., & Martí, M. J. (2021). Prediabetes, type 2 diabetes mellitus and risk of Parkinson’s disease: A population-based cohort study. Parkinsonism & Related Disorders, 89(June), 22–27. https://doi.org/10.1016/j.parkreldis.2021.06.002
  • Seeliger, D., & De Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Senkevich, K., Rudakou, U., & Gan-Or, Z. (2022). Neuropharmacology New therapeutic approaches to Parkinson’s disease targeting GBA, LRRK2 and Parkin. Neuropharmacology, 202(June 2021), 108822. https://doi.org/10.1016/j.neuropharm.2021.108822
  • Sherpa, D., Chrustowicz, J., & Schulman, B. A. (2022). How the ends signal the end: Regulation by E3 ubiquitin ligases recognizing protein termini. Molecular Cell, 82(8), 1424–1438. https://doi.org/10.1016/j.molcel.2022.02.004
  • Snyder, N. A., & Silva, G. M. (2021). Deubiquitinating enzymes (DUBs): Regulation, homeostasis, and oxidative stress response. The Journal of Biological Chemistry, 297(3), 101077. https://doi.org/10.1016/j.jbc.2021.101077
  • Team G Development. (2021). GROMACS documentation release. 2021. https://doi.org/10.5281/zenodo.4457591
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.AutoDock
  • Tsefou, E., Walker, A. S., Clark, E. H., Hicks, A. R., Luft, C., Takeda, K., Watanabe, T., Ramazio, B., Staddon, J. M., Briston, T., & Ketteler, R. (2021). Investigation of USP30 inhibition to enhance Parkin-mediated mitophagy: Tools and approaches. The Biochemical Journal, 478(23), 4099–4118. https://doi.org/10.1042/BCJ20210508
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). Gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., & Darian, E. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31, 671–690. https://doi.org/10.1002/jcc
  • Wang, F., Gao, Y., Zhou, L., Chen, J., Xie, Z., Ye, Z., & Wang, Y. (2022). USP30: Structure, emerging physiological role, and target inhibition. Frontiers in Pharmacology, 13(March), 851654. https://doi.org/10.3389/fphar.2022.851654
  • Wertz, I. E., & Wang, X. (2019). Review from discovery to bedside: Targeting the ubiquitin system. Cell Chemical Biology, 26(2), 156–177. https://doi.org/10.1016/j.chembiol.2018.10.022
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Li, W., Liu, G., & Tang, Y. (2018). ADMETSAR 2. 0: web-service for prediction and optimization of chemical ADMET properties, August, 2016–2017. Oxford University press, Bioinformatics. https://doi.org/10.1093/bioinformatics/bty707/5085368
  • Yano, H., Nishimiya, D., Kawaguchi, Y., Tamura, M., & Hashimoto, R. (2020). Discovery of potent and specific inhibitors targeting the active site of MMP-9 from the engineered SPINK2 library. Plos One, 15(12), e0244656. https://doi.org/10.1371/journal.pone.0244656
  • Yu, W., He, X., Vanommeslaeghe, K., & Mackerell, A. D. (2012). Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. https://doi.org/10.1002/jcc.23067
  • Zhan, P., Yu, B., & Ouyang, L. (2022). Drug repurposing: An effective strategy to accelerate contemporary drug discovery. Drug Discovery Today. 27(7), 1785–1788. https://doi.org/10.1016/j.drudis.2022.05.026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.