83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational study of inclusion complexes of V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin

&
Pages 2681-2697 | Received 06 Mar 2023, Accepted 19 Apr 2023, Published online: 05 May 2023

References

  • Assaba, I. M., Rahali, S., Belhocine, Y., & Allal, H. (2021). Inclusion complexation of chloroquine with α and β-cyclodextrin: Theoretical insights from the new B97-3c composite method. Journal of Molecular Structure, 1227, 129696. https://doi.org/10.1016/j.molstruc.2020.129696
  • Bader, R. F. W. (1990). In atoms in molecules: A quantum. Clarendon Press.
  • Bader, R. F. W. (1991). A quantum theory of molecular structure and its applications. Chemical Reviews, 91(5), 893–928. https://doi.org/10.1021/cr00005a013
  • Barba-Bon, A., Costero, A. M., Gil, S., Sancenón, F., & Martínez-Máñez, R. (2014). Chromo-fluorogenic BODIPY-complexes for selective detection of V-type nerve agent surrogates. Chemical Communications (Cambridge, England), 50(87), 13289–13291. https://doi.org/10.1039/c4cc05945j
  • Braga, L. S., Leal, D. H., Kuca, K., & Ramalho, T. C. (2020). Perspectives on the role of the frontier effective-for-reaction molecular orbital (FERMO) in the study of chemical reactivity: An updated review. Current Organic Chemistry, 24(3), 314–331. https://doi.org/10.2174/1385272824666200204121044
  • Brandhuber, F., Zengerle, M., Porwol, L., Bierwisch, A., Koller, M., Reiter, G., Worek, F., & Kubik, S. (2013). Tabun scavengers based on hydroxamic acid containing cyclodextrins. Chemical Communications (Cambridge, England), 49(33), 3425–3427. https://doi.org/10.1039/c3cc41290c
  • Brandhuber, F., Zengerle, M., Porwol, L., Tenberken, O., Thiermann, H., Worek, F., Kubik, S., & Reiter, G. (2012). Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups. Toxicology, 302(2–3), 163–171. https://doi.org/10.1016/j.tox.2012.08.013
  • Cao, M., Wu, D., Yoosefian, M., Sabaei, S., & Jahani, M. (2020). Comprehensive study of the encapsulation of Lomustine anticancer drug into single walled carbon nanotubes (SWCNTs): Solvent effects, molecular conformations, electronic properties and intramolecular hydrogen bond strength. Journal of Molecular Liquids, 320, 114285. https://doi.org/10.1016/j.molliq.2020.114285
  • da Silva, R. R., Ramalho, T. C., Santos, J. M., & Figueroa-Villar, J. D. (2006). On the limits of highest-occupied molecular orbital driven reactions: The frontier effective-for-reaction molecular orbital concept. The Journal of Physical Chemistry A, 110(3), 1031–1040. https://doi.org/10.1021/jp054434y
  • de Sousa, S. M. R., Guimaraes, L., Ferrari, J. L., De Almeida, W. B., & Nascimento, C. S. Jr. (2016). A DFT investigation on the host/guest inclusion process of prilocaine into β-cyclodextrin. Chemical Physics Letters. 652, 123–129. https://doi.org/10.1016/j.cplett.2016.04.053
  • Desire, B., & Saint-Andre, S. (1986). Interaction of soman with beta-cyclodextrin. Fundamental and Applied Toxicology. 7(4), 646–657. https://doi.org/10.1093/toxsci/7.4.646
  • Desire, B., & Saint-Andre, S. (1987). Inactivation of sarin and soman by cyclodextrins in vitro. Experientia, 43(4), 395–397. https://doi.org/10.1007/BF01940424
  • Diego, S. (2011). Materials studio release notes, release 6.0. Accelrys Software Inc.
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., & Cheeseman, J. R. (2009). Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford.
  • Giannakoudakis, D. A., & Bandosz, T. J. (2018). Detoxification of chemical warfare agents. Springer.
  • Grabowski, S. J. (2001). An estimation of strength of intramolecular hydrogen bonds—ab initio and AIM studies. Journal of Molecular Structure. 562(1–3), 137–143. https://doi.org/10.1016/S0022-2860(00)00863-2
  • Hamilton, M. G., Hill, I., Conley, J., Sawyer, T. W., Caneva, D. C., & Lundy, P. M. (2004). Clinical aspects of percutaneous poisoning by the chemical warfare agent VX. Effects of application site and decontamination. Military Medicine, 169(11), 856–862. https://doi.org/10.7205/milmed.169.11.856
  • Himri, S., Lafifi, I., Guendouzi, A., Cheriet, M., Nouar, L., & Madi, F. (2019). Density functional theories study of the interactions between host β-Cyclodextrin and guest 8-Anilinonaphthalene-1-sulfonate: Molecular structure, HOMO, LUMO, NBO, QTAIM and NMR analyses. Journal of Molecular Liquids, 280, 218–229. https://doi.org/10.1016/j.molliq.2019.01.019
  • Hoenig, S. L. (2007). Compendium of chemical warfare agents. Springer.
  • Hoskovcova, M., Halamek, E., Kobliha, Z., & Kasalova, I. (2009). Proposal for selective differentiating of nerve agent G and V type with utilisation of modified Ellman’s method. Environmental Chemistry Letters, 7(3), 277–281. https://doi.org/10.1007/s10311-008-0163-0
  • Keith, T. A. (2010). AIMAll (version 10.05.04). http://aim. tkgristmill.com5
  • Kim, K., Tsay, O. G., Atwood, D. A., & Churchill, D. G. (2011). Destruction and detection of chemical warfare agents. Chemical Reviews, 111(9), 5345–5403. https://doi.org/10.1021/cr100193y
  • Leikin, J. B., Thomas, R. G., Walter, F. G., Klein, R., & Meislin, H. W. (2002). A review of nerve agent exposure for the critical care physician. Critical Care Medicine, 30(10), 2346–2354. https://doi.org/10.1097/00003246-200210000-00026
  • Letort, S., Balieu, S., Erb, W., Gouhier, G., & Estour, F. (2016). Interactions of cyclodextrins and their derivatives with toxic organophosphorus compounds. Beilstein Journal of Organic Chemistry, 12, 204–228. https://doi.org/10.3762/bjoc.12.23
  • Letort, S., Bosco, M., Cornelio, B., Bregier, F., Daulon, S., Gouhier, G., & Estour, F. (2017). Structure–efficiency relationships of cyclodextrin scavengers in the hydrolytic degradation of organophosphorus compounds. Beilstein Journal of Organic Chemistry, 13, 417–427. https://doi.org/10.3762/bjoc.13.45
  • Li, S., Wang, L., Jiang, J., Tang, P., Wang, Q., Wu, D., & Li, H. (2015). Investigations of bisacodyl with modified β-cyclodextrins: Characterization, molecular modeling, and effect of PEG. Carbohydrate Polymers, 134, 82–91. https://doi.org/10.1016/j.carbpol.2015.07.074
  • Li, Z., Couzijn, E., & Zhang, X. (2012). A quantitative study of intrinsic non-covalent interactions within complexes of α-cyclodextrin and benzoate derivatives. Chemical Communications (Cambridge, England), 48(79), 9864–9866. https://doi.org/10.1039/c2cc34728h
  • Mahmoudi, F., & Shahraki, M. (2020). Host-guest interactions between nerve agent sarin and β-cyclodextrin: A theoretical investigation. Journal of the Taiwan Institute of Chemical Engineers, 116, 178–187. https://doi.org/10.1016/j.jtice.2020.11.022
  • Mahmoudi, F., & Shahraki, M. (2021). Encapsulating and decontaminating of sarin by heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin: MD simulations and QM calculations. Molecular Systems Design & Engineering, 6(8), 643–653. https://doi.org/10.1039/D0ME00173B
  • Manco, G., Porzio, E., & Suzumoto, Y. (2018). Enzymatic detoxification: A sustainable means of degrading toxic organophosphate pesticides and chemical warfare nerve agents. Journal of Chemical Technology & Biotechnology, 93(8), 2064–2082. https://doi.org/10.1002/jctb.5603
  • Matta, C. F., & Boyd, R. J. (2007). The quantum theory of atoms in molecules: From solid state to DNA and drug design. Wiley.
  • Mendonca, M. L., & Snurr, R. Q. (2019). Screening for improved nerve agent simulants and insights into organophosphate hydrolysis reactions from DFT and QSAR modeling. Chemistry (Weinheim an Der Bergstrasse, Germany), 25(39), 9217–9229. https://doi.org/10.1002/chem.201900655
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Autodock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mphuthi, N., Jijana, A., Mhlanga, N., Muchindu, M., Nyembe, S., Mwakikunga, B., Ndlovu, G., & Sikhwivhilu, L. (2023). Chemical warfare agents: An outlook on past and present technologies. Sensing of deadly toxic chemical warfare agents, nerve agent simulants, and their toxicological aspects (pp. 3–31). Elsevier.
  • Munro, N. B., Ambrose, K. R., & Watson, A. P. (1994). Toxicity of the organophosphate chemical warfare agents GA, GB and VX: Implications for public protection. Environmental Health Perspectives, 102, 8–38. https://doi.org/10.1289/ehp.9410218
  • Murray, J. S., & Politzer, P. (2011). The electrostatic potential: An overview. WIREs Computational Molecular Science, 1(2), 153–163. https://doi.org/10.1002/wcms.19
  • Murray, J. S., & Sen, K. (1996). Molecular electrostatic potentials, concepts. Elsevier.
  • Nutho, B., Nunthaboot, N., Wolschann, P., Kungwan, K., & Rungrotmongkol, T. (2017). Metadynamics supports molecular dynamics simulation-based binding affinities of eucalyptol and beta-cyclodextrin inclusion complexes. RSC Advances, 7(80), 50899–50911. https://doi.org/10.1039/C7RA09387J
  • Pan, W., Zhang, D., & Zhan, J. (2011). Theoretical investigation on the inclusion of TCDD with β-cyclodextrin by performing QM calculations and MD simulations. Journal of Hazardous Materials, 192(3), 1780–1786. https://doi.org/10.1016/j.jhazmat.2011.07.010
  • Parr, R. G., & Pearson, R. G. (1983). Absolute hardness: Companion parameter to absolute electronegativity. Journal of the American Chemical Society, 105(26), 7512–7516. https://doi.org/10.1021/ja00364a005
  • Parr, R. G., Donnelly, R. A., Levy, M., & Palke, W. E. (1978). Electronegativity: The density functional viewpoint. Journal of Chemical Physics, 68(8), 3801–3807. https://doi.org/10.1063/1.436185
  • Pinjari, R., Joshi, K., & Gejji, S. (2006). Molecular electrostatic potentials and hydrogen bonding in α-, β-, and γ-cyclodextrins. The Journal of Physical Chemistry A, 110(48), 13073–13080. https://doi.org/10.1021/jp065169z
  • Raissi, H., Jalbout, A. F., Nasseria, M. A., Yoosefian, M., Ghiassi, H., & Hameed, A. J. (2008). The effect of substitution on the intramolecular hydrogen bonding in 3‐hydroxy‐propenethial. International Journal of Quantum Chemistry, 108(9), 1444–1451. https://doi.org/10.1002/qua.21603
  • Raissi, H., Khanmohammadi, A., Yoosefian, M., & Mollania, F. (2013). Ab initio and DFT studies on 1-(thionitrosomethylene) hydrazine: Conformers, energies, and intramolecular hydrogen-bond strength. Structural Chemistry, 24(4), 1121–1133. https://doi.org/10.1007/s11224-012-0144-6
  • Raissi, H., Nadim, E. S., Yoosefian, M., Farzad, F., Ghiamati, E., Nowroozi, A. R., Fazli, M., & Amoozadeh, A. (2010). The effects of substitutions on structure, electron density, resonance and intramolecular hydrogen bonding strength in 3-mercapto-propenethial. Journal of Molecular Structure. 960(1–3), 1–9. https://doi.org/10.1016/j.theochem.2010.08.012
  • Raissi, H., Yoosefian, M., & Mollania, F. (2012). Comprehensive study of the interaction between hydrogen halides and methanol derivatives. International Journal of Quantum Chemistry, 112(16), 2782–2786. https://doi.org/10.1002/qua.23298
  • Raissi, H., Yoosefian, M., Mollania, F., & Khoshkhou, S. (2013). Electronic structures, intramolecular interactions, and aromaticity of substituted 1-(2-iminoethylidene) silan amine: A density functional study. Structural Chemistry, 24(1), 123–137. https://doi.org/10.1007/s11224-012-0038-7
  • Ramalho, T. C., de Castro, A. A., Silva, D. R., Cristina Silva, M., Franca, T. C., Bennion, B. J., & Kuca, K. (2016). Computational enzymology and organophosphorus degrading enzymes: Promising approaches toward remediation technologies of warfare agents and pesticides. Current Medicinal Chemistry, 23(10), 1041–1061. https://doi.org/10.2174/0929867323666160222113504
  • Reed, A. E., Curtiss, L. A., & Weinhold, F. (1988). Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chemical Reviews, 88(6), 899–926. https://doi.org/10.1021/cr00088a005
  • Rekharsky, M. V., & Inoue, Y. (1998). Complexation thermodynamics of cyclodextrins. Chemical Reviews, 98(5), 1875–1918. https://doi.org/10.1021/cr970015o
  • Rozas, I., Alkorta, I., & Elguero, J. (2000). Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. Journal of the American Chemical Society, 122(45), 11154–11161. https://doi.org/10.1021/ja0017864
  • Sambrook, M. R., Vincent, O. J. C., Ede, J. A., Gass, I. A., & Cragg, P. J. (2017). Experimental and computational study of the inclusion complexes of β-cyclodextrin with the chemical warfare agent soman (GD) and commonly used simulants. RSC Advances, 7(60), 38069–38076. https://doi.org/10.1039/C7RA03328A
  • Schonbeck, C., Westh, P., Madsen, J. C., Larsen, K. L., Stade, L. W., & Holm, R. (2011). Methylated β-cyclodextrins: Influence of degree and pattern of substitution on the thermodynamics of complexation with tauro- and glyco-conjugated bile salts. Langmuir: The ACS Journal of Surfaces and Colloids, 27(10), 5832–5841. https://doi.org/10.1021/la200381f
  • Sidell, F. R., & Borak, J. (1992). Chemical warfare agents: II. nerve agents. Annals of Emergency Medicine, 21(7), 865–871. https://doi.org/10.1016/s0196-0644(05)81036-4
  • Solis, F. J., & Wets, R. J. B. (1981). Minimization by random search techniques. Mathematics of Operations Research, 6(1), 19–30. https://doi.org/10.1287/moor.6.1.19
  • Weinhold, F., Landis, C. R., & Glendening, E. D. (2016). What is NBO analysis and how is it useful? International Reviews in Physical Chemistry, 35(3), 399–440. https://doi.org/10.1080/0144235X.2016.1192262
  • Wiener, S. W., & Hoffman, R. S. (2004). Nerve agents: A comprehensive review. Journal of Intensive Care Medicine, 19(1), 22–37. https://doi.org/10.1177/0885066603258659
  • Yang, Y. Z., Liu, X. F., Zhang, R. B., & Pang, S. P. (2017). Joint experimental and theoretical studies of surprising stability of the aryl pentazole upon noncovalent binding to β-cyclodextrin. Physical Chemistry Chemical Physics, 19(46), 31236–31244. https://doi.org/10.1039/c7cp05783k
  • Yoosefian, M., & Etminan, N. (2018). Leucine/Pd-loaded (5,5) single-walled carbon nanotube matrix as a novel nanobiosensors for in silico detection of protein. Amino Acids, 50(6), 653–661. https://doi.org/10.1007/s00726-018-2552-4
  • Yoosefian, M., Raissi, H., Nadim, E. S., Farzad, F., Fazli, M., Karimzade, E., & Nowroozi, A. (2011). Substituent effect on structure, electron density, and intramolecular hydrogen bonding in nitroso‐oxime methane. International Journal of Quantum Chemistry, 111(14), 3505–3516. https://doi.org/10.1002/qua.22793
  • Zaboli, M., & Raissi, H. (2015). The analysis of electronic structures, adsorption properties, NBO, QTAIM and NMR parameters of the adsorbed hydrogen sulfide on various sites of the outer surface of aluminum phosphide nanotube: A DFT study. Structural Chemistry, 26(4), 1059–1075. https://doi.org/10.1007/s11224-015-0563-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.