98
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Computational and physicochemical insight into 4-hydroxy-2-nonenal induced structural and functional perturbations in human low-density lipoprotein

, , , , &
Pages 2698-2713 | Received 19 Dec 2022, Accepted 19 Apr 2023, Published online: 08 May 2023

References

  • Abidi, M., Iram, A., Furkan, M., & Naeem, A. (2017). Secondary structural alterations in glucoamylase as an influence of protein aggregation. International Journal of Biological Macromolecules, 98, 459–468. https://doi.org/10.1016/j.ijbiomac.2017.01.086
  • Abidi, M., Khan, M. S., Ahmad, S., Kausar, T., Nayeem, S. M., Islam, S., Ali, A., Alam., & K., Moinuddin. (2018). Biophysical and biochemical studies on glycoxidatively modified human low density lipoprotein. Archives of Biochemistry and Biophysics, 645, 87–99. https://doi.org/10.1016/j.abb.2018.02.019
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aguilar Diaz De Leon, J., & Borges, C. R. (2020). Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. Journal of Visualized Experiments, 2020(159), 1–10. https://doi.org/10.3791/61122
  • Ahmad, S., Akhter, F., Shahab, U., Khan., & M. S., Moinuddin. (2013). Studies on glycation of human low density lipoprotein: A functional insight into physico-chemical analysis. International Journal of Biological Macromolecules, 62, 167–171. https://doi.org/10.1016/j.ijbiomac.2013.08.037
  • Ajmal, M. R., Nusrat, S., Alam, P., Zaidi, N., Badr, G., Mahmoud, M. H., Rajpoot, R. K., & Khan, R. H. (2016). Differential mode of interaction of ThioflavinT with native β structural motif in human α 1-acid glycoprotein and cross beta sheet of its amyloid: Biophysical and molecular docking approach. Journal of Molecular Structure, 1117, 208–217. https://doi.org/10.1016/j.molstruc.2016.03.081
  • Allsop, D., Mayes, J., Moore, S., Masad, A., & Tabner, B. J. (2008). Metal-dependent generation of reactive oxygen species from amyloid proteins implicated in neurodegenerative disease. Biochemical Society Transactions, 36(Pt 6), 1293–1298. https://doi.org/10.1042/BST0361293
  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Alouffi, S., Faisal, M., Alatar, A. A., & Ahmad, S. (2018). Oxidative modification of LDL by various physicochemical techniques: Its probable role in diabetes coupled with CVDs. BioMed Research International, 2018, 7390612. https://doi.org/10.1155/2018/7390612
  • Alouffi, S., Shahab, U., Khan, S., Khan, M., Khanam, A., Akasha, R., Shahanawaz, S. D., Arif, H., Tahir, I. K., Rehman, S., & Ahmad, S. (2022). Glyoxal induced glycative insult suffered by immunoglobulin G and fibrinogen proteins: A comparative physicochemical characterization to reveal structural perturbations. International Journal of Biological Macromolecules, 205, 283–296. https://doi.org/10.1016/j.ijbiomac.2022.02.093
  • Andrés Juan, C., Manuel Pérez de la Lastra, J., Plou, F. J., Pérez-Lebeña, E., & Reinbothe, S. (2021). Molecular sciences the chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. https://doi.org/10.3390/ijms
  • Antosiewicz, J. M., & Shugar, D. (2016). UV–Vis spectroscopy of tyrosine side-groups in studies of protein structure. Part 2: Selected applications. Biophysical Reviews, 8(2), 163–177. https://doi.org/10.1007/s12551-016-0197-7
  • Ayala, A., Muñoz, M. F., & Argüelles, S. (2014). Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity, 2014, 360438. https://doi.org/10.1155/2014/360438
  • Ayala, N., Zamora, A., Rinnan, Å., Saldo, J., & Castillo, M. (2020). The effect of heat treatment on the front-face fluorescence spectrum of tryptophan in skim milk. Journal of Food Composition and Analysis, 92, 103569. https://doi.org/10.1016/j.jfca.2020.103569
  • Bashir, M., Yousuf, I., Arjmand, F., & Tabassum, S. (2022). Deciphering the effect of hydrophobicity on protein binding interaction in cobalt(II) complexes by multispectroscopic and computational methods. Journal of Biomolecular Structure & Dynamics, 40(16), 7381–7393. https://doi.org/10.1080/07391102.2021.1897678
  • Berliner, J. A., & Heinecke, J. W. (1996). The role of oxidised lipoproteins in atherogenesis. Free Radical Biology & Medicine, 20(5), 707–727. https://doi.org/10.1016/0891-5849(95)02173-6
  • Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 11, 127–152. https://doi.org/10.1016/S1387-2656(05)11004-7
  • Biancalana, M., & Koide, S. (2010). Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta, 1804(7), 1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
  • Bonjoch, N. P., & Tamayo, P. R. (2001). Protein content quantification by bradford method. Handbook of plant ecophysiology techniques (pp. 283–295). Kluwer Academic Publishers.
  • Bouchard, M., Zurdo, J., Nettleton, E. J., Dobson, C. M., & Robinson, C. V. (2000). Formation of insulin amyloid fibrils followed by FTIR simultaneously with CD and electron microscopy. Protein Science: A Publication of the Protein Society, 9(10), 1960–1967. https://doi.org/10.1110/ps.9.10.1960
  • Caliri, A. W., Tommasi, S., & Besaratinia, A. (2021). Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutation Research. Reviews in Mutation Research, 787, 108365. https://doi.org/10.1016/j.mrrev.2021.108365
  • Castro, J. P., Jung, T., Grune, T., & Siems, W. (2017). 4-Hydroxynonenal (HNE) modified proteins in metabolic diseases. Free Radical Biology & Medicine, 111, 309–315. https://doi.org/10.1016/j.freeradbiomed.2016.10.497
  • Chung, H. S., Khalil, M., & Tokmakoff, A. (2004). Nonlinear infrared spectroscopy of protein conformational change during thermal unfolding. The Journal of Physical Chemistry B, 108(39), 15332–15342. https://doi.org/10.1021/jp0479926
  • Csala, M., Kardon, T., Legeza, B., Lizák, B., Mandl, J., Margittai, É., Puskás, F., Száraz, P., Szelényi, P., & Bánhegyi, G. (2015). On the role of 4-hydroxynonenal in health and disease. Biochimica et Biophysica Acta, 1852(5), 826–838. https://doi.org/10.1016/j.bbadis.2015.01.015
  • Dalleau, S., Baradat, M., Guéraud, F., & Huc, L. (2013). Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death and Differentiation, 20(12), 1615–1630. https://doi.org/10.1038/cdd.2013.138
  • Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–406. https://doi.org/10.1111/j.1582-4934.2006.tb00407.x
  • Darden, T., Perera, L., Li, L., & Lee, P. (1999). New tricks for modelers from the crystallography toolkit: The particle mesh Ewald algorithm and its use in nucleic acid simulations. Structure, 7(3), R55–R60. https://doi.org/10.1016/S0969-2126(99)80033-1
  • Deng, C. F., Zhu, N., Zhao, T. J., Li, H. F., Gu, J., Liao, D. F., & Qin, L. (2022). Involvement of LDL and ox-LDL in cancer development and its therapeutical potential. Frontiers in Oncology, 12, 803473. https://doi.org/10.3389/fonc.2022.803473
  • Dixit, K., Ahmad, S., Shahab, U., Habib, S., Naim, M., Alam, K., Ali., & A., Moinuddin. (2014). Human DNA damage by the synergistic action of 4-aminobiphenyl and nitric oxide: An immunochemical study. Environmental Toxicology, 29(5), 568–576. https://doi.org/10.1002/tox.21782
  • Dong, A., Jones, L. T. S., Kerwin, B. A., Krishnan, S., & Carpenter, J. F. (2006). Secondary structures of proteins adsorbed onto aluminum hydroxide: Infrared spectroscopic analysis of proteins from low solution concentrations. Analytical Biochemistry, 351(2), 282–289. https://doi.org/10.1016/j.ab.2006.01.008
  • Friguet, B., & Szweda, L. I. (1997). Inhibition of the multicatalytic proteinase (proteasome) by 4-hydroxy-2-nonenal cross-linked protein. FEBS Letters, 405(1), 21–25. https://doi.org/10.1016/S0014-5793(97)00148-8
  • Fubini, B., & Hubbard, A. (2003). Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology & Medicine, 34(12), 1507–1516. https://doi.org/10.1016/S0891-5849(03)00149-7
  • Gallo, G., Sprovieri, P., & Martino, G. (2020). 4-Hydroxynonenal and oxidative stress in several organelles and its damaging effects on cell functions. Journal of Physiology and Pharmacology, 71, 15–33. https://doi.org/10.26402/jpp.2020.1.07
  • Gasymov, O. K., & Glasgow, B. J. (2007). ANS fluorescence: Potential to augment the identification of the external binding sites of proteins. Biochimica et Biophysica Acta, 1774(3), 403–411. https://doi.org/10.1016/j.bbapap.2007.01.002
  • Gęgotek, A., & Skrzydlewska, E. (2019). Biological effect of protein modifications by lipid peroxidation products. Chemistry and Physics of Lipids, 221, 46–52. https://doi.org/10.1016/j.chemphyslip.2019.03.011
  • Goodsell, D. S., Morris, G. M., & Olson, A. J. (1996). Automated docking of flexible ligands: Applications of AutoDock. Journal of Molecular Recognition, 9(1), 1–5. https://doi.org/10.1002/(SICI)1099-1352(199601)9:1<1::AID-JMR241>3.0.CO;2-6
  • Goormaghtigh, E., Cabiaux, V., & Ruysschaert, J.-M. (1990). Secondary structure and dosage of soluble and membrane proteins by attenuated total reflection Fourier‐transform infrared spectroscopy on hydrated films. European Journal of Biochemistry, 193(2), 409–420. https://doi.org/10.1111/j.1432-1033.1990.tb19354.x
  • Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890. https://doi.org/10.1038/nprot.2006.202
  • Grimsrud, P. A., Xie, H., Griffin, T. J., & Bernlohr, D. A. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. The Journal of Biological Chemistry, 283(32), 21837–21841. https://doi.org/10.1074/jbc.R700019200
  • Grune, T., & Davies, K. J. (1997). Breakdown of oxidised proteins as a part of secondary antioxidant defenses in mammalian cells. BioFactors (Oxford, England), 6(2), 165–172. https://doi.org/10.1002/biof.5520060210
  • Guéraud, F. (2017). 4-Hydroxynonenal metabolites and adducts in pre-carcinogenic conditions and cancer. Free Radical Biology & Medicine, 111, 196–208. https://doi.org/10.1016/j.freeradbiomed.2016.12.025
  • Guliyeva, A. J., & Gasymov, O. K. (2020). ANS fluorescence: Potential to discriminate hydrophobic sites of proteins in solid states. Biochemistry and Biophysics Reports, 24, 100843. https://doi.org/10.1016/j.bbrep.2020.100843
  • Harmon, M. E., Campen, M. J., Miller, C., Shuey, C., Cajero, M., Lucas, S., Pacheco, B., Erdei, E., Ramone, S., Nez, T., & Lewis, J. (2016). Associations of circulating oxidised LDL and conventional biomarkers of cardiovascular disease in a cross-sectional study of the Navajo population. PLoS One, 11(3), e0143102. https://doi.org/10.1371/journal.pone.0143102
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hoff, H. F., & O’Neil, J. (1993). Structural and functional changes in LDL after modification with both 4- hydroxynonenal and malondialdehyde. Journal of Lipid Research, 34(7), 1209–1217. https://doi.org/10.1016/S0022-2275(20)37708-7
  • Höhn, A., König, J., & Grune, T. (2013). Protein oxidation in aging and the removal of oxidised proteins. Journal of Proteomics, 92, 132–159. https://doi.org/10.1016/j.jprot.2013.01.004
  • Hurh, K., Park, M., In Jang, S., Park, E. C., & Jang, S. Y. (2022). Association between serum lipid levels over time and risk of Parkinson’s disease. Scientific Reports, 12(1), 1–9. https://doi.org/10.1038/s41598-022-25180-8
  • Itabe, H., Obama, T., & Kato, R. (2011). The dynamics of oxidised LDL during atherogenesis. Journal of Lipids, 2011, 418313. https://doi.org/10.1155/2011/418313
  • Jaganjac, M., Milkovic, L., Gegotek, A., Cindric, M., Zarkovic, K., Skrzydlewska, E., & Zarkovic, N. (2020). The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases, Free. Free Radical Biology & Medicine, 157, 128–153. https://doi.org/10.1016/j.freeradbiomed.2019.11.023
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Jelic, M. D., Mandic, A. D., Maricic, S. M., & Srdjenovic, B. U. (2021). Oxidative stress and its role in cancer. Journal of Cancer Research and Therapeutics, 18, 22–28. https://doi.org/10.4103/jcrt.JCRT
  • Kaur, K. (1999). Modification of proteins by oxidised lipids in LDL and human plasma: Immunodetection and prevention. Case Western Reserve University. https://doi.org/10.1016/j.jaci.2012.05.050
  • Khan, M. Y., Alouffi, S., & Ahmad, S. (2018). Immunochemical studies on native and glycated LDL – An approach to uncover the structural perturbations. Elsevier B.V. https://doi.org/10.1016/j.ijbiomac.2018.04.016
  • Khatoon, F., Alam, K., Ali., & A., Moinuddin. (2012). Physicochemical and immunological studies on 4-hydroxynonenal modified HSA: Implications of protein damage by lipid peroxidation products in the etiopathogenesis of SLE. Human Immunology, 73(11), 1132–1139. https://doi.org/10.1016/j.humimm.2012.08.011
  • Kong, J., & Yu, S. (2007). Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, 39(8), 549–559. https://doi.org/10.1111/j.1745-7270.2007.00320.x
  • Kurouski, D., & Lednev, I. K. (2011). The impact of protein disulfide bonds on the amyloid fibril morphology. International Journal of Biomedical Nanoscience and Nanotechnology, 2(2), 167–176. https://doi.org/10.1504/IJBNN.2011.041000
  • Levine, R. L., Williams, J. A., Stadtman, E. P., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357. https://doi.org/10.1016/S0076-6879(94)33040-9
  • Li, Y., Zhao, T., Li, J., Xia, M., Li, Y., Wang, X., Liu, C., Zheng, T., Chen, R., Kan, D., Xie, Y., Song, J., Feng, Y., Yu, T., & Sun, P. (2022). Oxidative stress and 4-hydroxy-2-nonenal (HNE): Implications in the pathogenesis and treatment of aging-related diseases. Journal of Immunology Research, 2022, 2233906. https://doi.org/10.1155/2022/2233906
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Liu, R., Fu, S., Zhan, H., & Lucia, L. A. (2009). Spectrophotometric determination of superoxide anion radical with nitro blue tetrazolium general spectroscopic protocol to obtain the concentration of the superoxide anion radical. Industrial & Engineering Chemistry Research, 48(20), 9331–9334. https://doi.org/10.1021/ie9007826
  • Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P., & Zuo, L. (2017). Oxidative stress in neurodegenerative diseases: From molecular mechanisms to clinical applications. Oxidative Medicine and Cellular Longevity, 2017, 2525967. https://doi.org/10.1155/2017/2525967
  • López-Bernardo, E. (2015). Regulation of the expression and function of mitochondrial uncoupling protein UCP3 in response to oxidative stress: Involvement of the transcription factor Nrf2 and implications in cardiac ischemia-reperfusion. Dialnet, (pp. 1–169).
  • López-Yerena, A., Perez, M., Vallverdú-Queralt, A., & Escribano-Ferrer, E. (2020). Insights into the binding of dietary phenolic compounds to human serum albumin and food-drug interactions. Pharmaceutics, 12(11), 1123. https://doi.org/10.3390/pharmaceutics12111123
  • Lowhalidanon, K., & Khunkaewla, P. (2021). Discrimination between minimally modified LDL and fully oxidised LDL using monoclonal antibodies. Analytical Biochemistry, 619, 114103. https://doi.org/10.1016/j.ab.2021.114103
  • March, D., Bianco, V., & Franzese, G. (2021). Protein unfolding and aggregation near a hydrophobic interface. Polymers (Basel), 13(1), 156. https://doi.org/10.3390/polym13010156
  • Martín-Sierra, C., Laranjeira, P., Domingues, M. R., & Paiva, A. (2019). Lipoxidation and cancer immunity. Redox Biology, 23, 101103. https://doi.org/10.1016/j.redox.2019.101103
  • Micsonai, A., Bulyáki, É., & Kardos, J. (2021). BeStSel: From secondary structure analysis to protein fold prediction by circular dichroism spectroscopy. Methods in Molecular Biology (Clifton, NJ), 2199, 175–189. https://doi.org/10.1007/978-1-0716-0892-0_11
  • Mohammadi, M., Oehler, B., Kloka, J., Martin, C., Brack, A., Blum, R., & Rittner, H. L. (2018). Antinociception by the anti-oxidised phospholipid antibody E06. British Journal of Pharmacology, 175(14), 2940–2955. https://doi.org/10.1111/bph.14340
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates gabedit—a graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Murtola, T. J., Syvälä, H., Pennanen, P., Bläuer, M., Solakivi, T., Ylikomi, T., & Tammela, T. L. J. (2012). The importance of LDL and Cholesterol metabolism for prostate epithelial cell growth. PLoS One. 7(6), e39445. https://doi.org/10.1371/journal.pone.0039445
  • Nehra, R., Ansari, S. K., Nasir, A., Nehra, M., & Aggarwal, N. (2020). Lipid peroxidation and antioxidant status in cigarette smokers ischemic heart disease (IHD) patients. International Journal of Advanced Biochemistry Research, 4(2), 17–19. https://doi.org/10.33545/26174693.2020.v4.i2a.50
  • Nilsson, M. R. (2004). Techniques to study amyloid fibril formation in vitro. Methods (San Diego, CA), 34(1), 151–160. https://doi.org/10.1016/j.ymeth.2004.03.012
  • Perluigi, M., Coccia, R., & Butterfield, D. A. (2012). 4-hydroxy-2-nonenal, a reactive product of lipid peroxidation, and neurodegenerative diseases: A toxic combination illuminated by redox proteomics studies. Antioxidants & Redox Signaling, 17(11), 1590–1609. https://doi.org/10.1089/ars.2011.4406
  • Prassl, R., & Laggner, P. (2009). Molecular structure of low density lipoprotein: Current status and future challenges. European Biophysics Journal, 38(2), 145–158. https://doi.org/10.1007/s00249-008-0368-y
  • Qais, F. A., Alam, M. M., Naseem, I., & Ahmad, I. (2016). Understanding the mechanism of non-enzymatic glycation inhibition by cinnamic acid: An in vitro interaction and molecular modelling study. RSC Advances, 6(70), 65322–65337. https://doi.org/10.1039/C6RA12321J
  • Quehenberger, O., Koller, E., Jurgens, G., & Esterbauer, H. (1987). Investigation of lipid peroxidation in human low density lipoprotein, Free. Free Radical Research Communications, 3(1–5), 233–242. https://doi.org/10.3109/10715768709069788
  • Raza, A., Mahmood, R., Habib, S., Talha, M., Khan, S., Hashmi, M. A., Mohammad, T., & Ali, A. (2022). Fructosylation of human insulin causes AGEs formation, structural perturbations and morphological changes: an in silico and multispectroscopic study. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2098820
  • Reddy, A. V., Killampalli, L. K., Prakash, A. R., Naag, S., Sreenath, G., & Biraggari, S. K. (2016). Analysis of lipid profile in cancer patients, smokers, and nonsmokers. Dental Research Journal, 13(6), 494–499. https://doi.org/10.4103/1735-3327.197036
  • Requena, J. R., Fu, M. X., Ahmed, M. U., Jenkins, A. J., Lyons, T. J., Baynes, J. W., & Thorpe, S. R. (1997). Quantification of malondialdehyde and 4-hydroxynonenal adducts to lysine residues in native and oxidised human low-density lipoprotein. Biochemical Journal, 322(1), 317–325. https://doi.org/10.1042/bj3220317
  • Roy, B., Sundar, K., & Palaniyandi, S. S. (2020). 4-hydroxy-2-nonenal decreases coronary endothelial cell migration: Potentiation by aldehyde dehydrogenase 2 inhibition. Vascular Pharmacology, 131, 106762. https://doi.org/10.1016/j.vph.2020.106762
  • Schauenstein, E., Esterbauer, H., Jaag, G., & Taufer, M. (1964). The effect of aldehydes on normal and malignant cells. 1st report: Hydroxyoctenal, a new fat aldehyde. Monatshefte Fur Chemie, 95(1), 180–183. https://doi.org/10.1007/BF00909265
  • Schwabe, M., Bell, E., & Bell, J. (2016). Using ANS to probe ligand induced conformational states of malate dehydrogenase. FASEB Journal, 30, 600–619.
  • Sevanian, A., Bittolo-Bon, G., Cazzolato, G., Hodis, H., Hwang, J., Zamburlini, A., Maiorino, M., & Ursini, F. (1997). LDL- is a lipid hydroperoxide-enriched circulating lipoprotein. Journal of Lipid Research, 38(3), 419–428. https://doi.org/10.1016/S0022-2275(20)37250-3
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Ur Rehman, S., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Siddiqui, S., Mujeeb, A., Ameen, F., Ishqi, H. M., Rehman, S. U., & Tabish, M. (2021). Investigating the mechanism of binding of nalidixic acid with deoxyribonucleic acid and serum albumin: A biophysical and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 39(2), 570–585. https://doi.org/10.1080/07391102.2020.1711808
  • Siems, W. G., Capuozzo, E., Verginelli, D., Salerno, C., Crifò, C., & Grune, T. (1997). Inhibition of NADPH oxidase-mediated superoxide radical formation in PMA-stimulated human neutrophils by 4-hydroxynonenal - Binding to -SH and -NH2 groups. Free Radical Research, 27(4), 353–358. https://doi.org/10.3109/10715769709065774
  • Singh, S. P., Chen, T., Chen, L., Mei, N., McLain, E., Samokyszyn, V., Thaden, J. J., Moore, M. M., & Zimniak, P. (2005). Mutagenic effects of 4-hydroxynonenal triacetate, a chemically protected form of the lipid peroxidation product 4-hydroxynonenal, as assayed in L5178Y/Tk+/- mouse lymphoma cells. The Journal of Pharmacology and Experimental Therapeutics, 313(2), 855–861. https://doi.org/10.1124/jpet.104.080754
  • Spickett, C. M. (2013). The lipid peroxidation product 4-hydroxy-2-nonenal: Advances in chemistry and analysis. Redox Biology, 1(1), 145–152. https://doi.org/10.1016/j.redox.2013.01.007
  • Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance. The Journal of Biological Chemistry, 272(34), 20963–20966. https://doi.org/10.1074/jbc.272.34.20963
  • Stryer, L. (1968). Fluorescence spectroscopy of proteins. Science (New York, NY), 162(3853), 526–533. https://doi.org/10.1126/science.162.3853.526
  • Sun, Z., & Zhang, J. Z. H. (2021). Thermodynamic insights of base flipping in TNA duplex: Force fields, salt concentrations, and free-energy simulation methods. CCS Chemistry, 3(2), 1026–1039. https://doi.org/10.31635/ccschem.020.202000202
  • Talha, M., Mir, A. R., Habib, S., Abidi, M., Warsi, M. S., Islam., & S., Moinuddin. (2021). Hydroxyl radical induced structural perturbations make insulin highly immunogenic and generate an auto-immune response in type 2 diabetes mellitus. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 255, 119640. https://doi.org/10.1016/j.saa.2021.119640
  • Thakkar, S. V., Allegre, K. M., Joshi, S. B., Volkin, D. B., & Middaugh, C. R. (2012). An application of ultraviolet spectroscopy to study interactions in proteins solutions at high concentrations. Journal of Pharmaceutical Sciences, 101(9), 3051–3061. https://doi.org/10.1002/jps.23188
  • Toyoda, K., Nagae, R., Akagawa, M., Ishino, K., Shibata, T., Ito, S., Shibata, N., Yamamoto, T., Kobayashi, M., Takasaki, Y., Matsuda, T., & Uchida, K. (2007). Protein-bound 4-hydroxy-2-nonenal: An endogenous triggering antigen of anti-DNA response. The Journal of Biological Chemistry, 282(35), 25769–25778. https://doi.org/10.1074/jbc.M703039200
  • Uchida, K., & Stadtman, E. R. (1993). Covalent attachment of 4-hydroxynonenal to glyceraldehyde-3-phosphate dehydrogenase. A possible involvement of intra- and intermolecular cross-linking reaction. Journal of Biological Chemistry, 268(9), 6388–6393. https://doi.org/10.1016/S0021-9258(18)53264-6
  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vance, J. E. (2012). Dysregulation of cholesterol balance in the brain: Contribution to neurodegenerative diseases, DMM. Disease Models & Mechanisms, 5(6), 746–755. https://doi.org/10.1242/dmm.010124
  • Wakita, C., Maeshima, T., Yamazaki, A., Shibata, T., Ito, S., Akagawa, M., Ojika, M., Yodoi, J., & Uchida, K. (2009). Stereochemical configuration of 4-hydroxy-2-nonenal-cysteine adducts and their stereoselective formation in a redox-regulated protein. The Journal of Biological Chemistry, 284(42), 28810–28822. https://doi.org/10.1074/jbc.M109.019927
  • Walzem, R. L., Watkins, S., Frankel, E. N., Hansen, R. J., & German, J. B. (1995). Older plasma lipoproteins are more susceptible to oxidation: A linking mechanism for the lipid and oxidation theories of atherosclerotic cardiovascular disease. Proceedings of the National Academy of Sciences of the United States of America, 92(16), 7460–7464. https://doi.org/10.1073/pnas.92.16.7460
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). 20035_Ftp. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wani, M. J., Salman, K. A., Moin, S., & Arif, A. (2023). Effect of crocin on glycated human low-density lipoprotein: A protective and mechanistic approach. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 286, 121958. https://doi.org/10.1016/j.saa.2022.121958
  • Warsi, M. S., Habib, S., Talha, M., Mir, A. R., Alam, K., Ali., & A., Moinuddin. (2021). Characterization of human serum albumin modified by hair dye component, 4-chloro-1,2-phenylenediamine: Role in protein aggregation, redox biology and cytotoxicity. Journal of Molecular Liquids. 331, 115731. https://doi.org/10.1016/j.molliq.2021.115731
  • Weids, A. J., Ibstedt, S., Tamás, M. J., & Grant, C. M. (2016). Distinct stress conditions result in aggregation of proteins with similar properties. Scientific Reports, 6, 24554. https://doi.org/10.1038/srep24554
  • Wieland, H., & Seidel, D. (1983). A simple specific method for precipitation of low density lipoproteins. Journal of Lipid Research, 24 (7), 904–909. https://doi.org/10.1016/s0022-2275(20)37936-0
  • Witztum, J. L., & Steinberg, D. (2001). The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends in Cardiovascular Medicine, 11(3–4), 93–102. https://doi.org/10.1016/S1050-1738(01)00111-6
  • Xue, C., Lin, T. Y., Chang, D., & Guo, Z. (2017). Thioflavin T as an amyloid dye: Fibril quantification, optimal concentration and effect on aggregation. Royal Society Open Science, 4(1), 160696. https://doi.org/10.1098/rsos.160696
  • Zhong, H., Xiao, M., Zarkovic, K., Zhu, M., Sa, R., Lu, J., Tao, Y., Chen, Q., Xia, L., Cheng, S., Waeg, G., Zarkovic, N., & Yin, H. (2017). Mitochondrial control of apoptosis through modulation of cardiolipin oxidation in hepatocellular carcinoma: A novel link between oxidative stress and cancer. Free Radical Biology & Medicine, 102, 67–76. https://doi.org/10.1016/j.freeradbiomed.2016.10.494

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.