138
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Antimicrobial potential of phytocompounds of Acorus calamus: in silico approach

, , , , , ORCID Icon, , , , , , & show all
Pages 2726-2737 | Received 07 Nov 2022, Accepted 19 Apr 2023, Published online: 12 May 2023

References

  • Abascal, K., & Yarnell, E. (2013). Plants for addressing multidrug resistance: An update. Alternative and Complementary Therapies, 19(3), 126–132. https://doi.org/10.1089/act.2013.19310
  • Arnittali, M., Rissanou, A. N., & Harmandaris, V. (2019). Structure of biomolecules through molecular dynamics simulations. Procedia Computer Science, 156, 69–78. https://doi.org/10.1016/j.procs.2019.08.181
  • Chandel, S. R., Dev, K., & Khosla, P. K. (2016). Comparative antioxidant potential of leaves and fruit extracts of Terminalia bellerica Roxb from Himachal Pradesh. International Journal of Pharmaceutical Sciences Review and Research, 38, 216–222.
  • Chandel, S. R., Kumar, V., Guleria, S., Sharma, N., Sourirajan, A., Khosla, P. K., Baumler, D. J., & Dev, K. (2019). Sequential fractionation by organic solvents enhances the antioxidant and antibacterial activity of ethanolic extracts of fruits and leaves of Terminalia bellerica from North Western Himalayas, India. Pharmacognosy Journal, 11(1), 94–101. https://doi.org/10.5530/pj.2019.1.17
  • Chandra, D., & Prasad, K. (2017). Phytochemicals of Acorus calamus (Sweet flag). Journal of Medicinal Plants Studies, 5, 277–281.
  • Chang, H.-H., Cohen, T., Grad, Y. H., Hanage, W. P., O'Brien, T. F., & Lipsitch, M. (2015). Origin and proliferation of multiple-drug resistance in bacterial pathogens. Microbiology and Molecular Biology Reviews: MMBR, 79(1), 101–116. https://doi.org/10.1128/MMBR.00039-14
  • Chaudhary, K. K., & Mishra, N. (2016). A review on molecular docking: Novel tool for drug discovery. databases, 3, 1029.
  • Elmaaty, A. A., Darwish, K. M., Chrouda, A., Boseila, A. A., Tantawy, M. A., Elhady, S. S., Shaik, A. B., Mustafa, M., & Al-Karmalawy, A. A. (2022, December 22). In silico and in vitro studies for benzimidazole anthelmintics repurposing as VEGFR-2 antagonists: Novel mebendazole-loaded mixed micelles with enhanced dissolution and anticancer activity. ACS Omega, 7(1), 875–899. PMID: 35036753; PMCID: PMC8757357. https://doi.org/10.1021/acsomega.1c05519
  • Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. https://doi.org/10.1007/s40484-019-0172-y
  • Ganjewala, D., & Srivastava, A. K. (2011). An update on chemical composition and bioactivities of Acorus species. Asian Journal of Plant Sciences, 10(3), 182–189. https://doi.org/10.3923/ajps.2011.182.189
  • Gilani, A., Shah, A. J., Ahmad, M., & Shaheen, F. (2006). Antispasmodic effect of Acorus calamus Linn. is mediated through calcium channel blockade. Phytotherapy Research: PTR, 20(12), 1080–1084. https://doi.org/10.1002/ptr.2000
  • Gunamalai, L., & Vanila, D. (2014). Insilico analysis of Neem secondary metabolites against clumping factor A of Staphylococcus aureus. International Journal of Pharmaceutical Sciences Review and Research, 29, 232–235.
  • Hamed, M. I. A., Darwish, K. M., Soltane, R., Chrouda, A., Mostafa, A., Abo Shama, N. M., Elhady, S. S., Abulkhair, H. S., Khodir, A. E., Elmaaty, A. A., & Al-Karmalawy, A. A. (2021, November 3). β-Blockers bearing hydroxyethylamine and hydroxyethylene as potential SARS-CoV-2 Mpro inhibitors: Rational based design, in silico, in vitro, and SAR studies for lead optimization. RSC Advances, 11(56), 35536–35558. PMID: 35493159; PMCID: PMC9043270. https://doi.org/10.1039/d1ra04820a
  • Kaur, B., Rolta, R., Salaria, D., Kumar, B., Fadare, O. A., da Costa, R. A., Ahmad, A., Al-Rawi, M. B. A., Raish, M., & Rather, I. A. (2022). An in silico investigation to explore anti-cancer potential of Foeniculum vulgare Mill. Phytoconstituents for the management of human breast cancer. Molecules, 27(13), 4077. https://doi.org/10.3390/molecules27134077
  • Khwairakpam, A. D., Damayenti, Y. D., Deka, A., Monisha, J., Roy, N. K., Padmavathi, G., & Kunnumakkara, A. B. (2018). Acorus calamus: A bio-reserve of medicinal values. Journal of Basic and Clinical Physiology and Pharmacology, 29(2), 107–122. https://doi.org/10.1515/jbcpp-2016-0132
  • Kumar, V., Tang, C., Bethel, C. R., Papp-Wallace, K. M., Wyatt, J., Desarbre, E., Bonomo, R. A., & van den Akker, F. (2020). Structural insights into ceftobiprole inhibition of Pseudomonas aeruginosa penicillin-binding protein 3. Antimicrobial Agents and Chemotherapy, 64(5), e00106–00120. https://doi.org/10.1128/AAC.00106-20
  • Liu, K., Watanabe, E., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations. Journal of Computer-Aided Molecular Design, 31(2), 201–211. https://doi.org/10.1007/s10822-016-0005-2
  • Mandyal, P., Guleria, A., Sharma, R., Sambyal, S., Priye, A., Fang, B., & Shandilya, P. (2022). Insight into the properties, morphologies and photocatalytic applications of S-scheme Bi2WO6. Journal of Environmental Chemical Engineering, 10(6), 108918. https://doi.org/10.1016/j.jece.2022.108918
  • Mehta, J., Rolta, R., Salaria, D., Awofisayo, O., Fadare, O. A., Sharma, P. P., Rathi, B., Chopra, A., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2021). Phytocompounds from himalayan medicinal plants as potential drugs to treat multidrug-resistant Salmonella typhimurium: An in silico approach. Biomedicines, 9(10), 1402. https://doi.org/10.3390/biomedicines9101402
  • Mehta, J., Utkarsh, K., Fuloria, S., Singh, T., Sekar, M., Salaria, D., Rolta, R., Begum, M. Y., Gan, S. H., Rani, N. N. I. M., Chidambaram, K., Subramaniyan, V., Sathasivam, K. V., Lum, P. T., Uthirapathy, S., Fadare, O. A., Awofisayo, O., & Fuloria, N. K. (2022). Antibacterial potential of Bacopa monnieri (L.) Wettst. and its bioactive molecules against uropathogens—an in silico study to identify potential lead molecule (s) for the development of new drugs to treat urinary tract infections. Molecules, 27(15), 4971. https://doi.org/10.3390/molecules27154971
  • Muchtaromah, B., Hayati, A., & Agustina, E. (2019). Phytochemical screening ana antibacterial activity of Acorus calamus L. extracts. Jurnal Biodjati, 4(1), 68–78. https://doi.org/10.15575/biodjati.v4i1.4235
  • O’Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 1–14. https://doi.org/10.1186/1758-2946-3-33
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Rawat, S., Jugran, A. K., Bahukhandi, A., Bahuguna, A., Bhatt, I. D., Rawal, R. S., & Dhar, U. (2016). Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech, 6(2), 1–12. https://doi.org/10.1007/s13205-016-0470-2
  • Rita, W. S., Kawuri, R., Swantara, I., & M. D. (2017). The essential oil contents of Jeringau (Acorus calamus L.) rhizomes and their antifungal activity against Candida albicans. Journal of Health Sciences and Medicine, 1(1), 33–38. https://doi.org/10.24843/JHSM.2017.v01.i01.p09
  • Rolta, R., Salaria, D., Kumar, V., Patel, C. N., Sourirajan, A., Baumler, D. J., & Dev, K. (2022). Molecular docking studies of phytocompounds of Rheum emodi Wall with proteins responsible for antibiotic resistance in bacterial and fungal pathogens: In silico approach to enhance the bio-availability of antibiotics. Journal of Biomolecular Structure & Dynamics, 40(8), 3789–3803. https://doi.org/10.1080/07391102.2020.1850364
  • Rolta, R., Salaria, D., Sharma, P., Sharma, B., Kumar, V., Rathi, B., Verma, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2021a). Phytocompounds of Rheum emodi, Thymus serpyllum, and Artemisia annua inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: In silico approach. Current Pharmacology Reports, 7(4), 135–149. https://doi.org/10.1007/s40495-021-00259-4
  • Rolta, R., Yadav, R., Salaria, D., Trivedi, S., Imran, M., Sourirajan, A., Baumler, D. J., & Dev, K. (2021b). In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. Journal of Biomolecular Structure & Dynamics, 39(18), 7017–7034. https://doi.org/10.1080/07391102.2020.1804457
  • Salaria, D., Rolta, R., Mehta, J., Awofisayo, O., Fadare, O. A., Kaur, B., Kumar, B., Araujo da Costa, R., Chandel, S. R., Kaushik, N., Choi, E. H., & Kaushik, N. K. (2022a). Phytoconstituents of traditional Himalayan Herbs as potential inhibitors of Human Papillomavirus (HPV-18) for cervical cancer treatment: An In silico Approach. PloS One, 17(3), e0265420. https://doi.org/10.1371/journal.pone.0265420
  • Salaria, D., Rolta, R., Sharma, N., Dev, K., Sourirajan, A., & Kumar, V. (2020). In silico and In vitro evaluation of the anti-inflammatory and antioxidant potential of Cymbopogon citratus from North-western Himalayas. BioRxiv.
  • Salaria, D., Rolta, R., Sharma, N., Patel, C. N., Ghosh, A., Dev, K., Sourirajan, A., & Kumar, V. (2022b). In vitro and in silico antioxidant and anti-inflammatory potential of essential oil of Cymbopogon citratus (DC.) Stapf. of North-Western Himalaya. Journal of Biomolecular Structure & Dynamics, 40(24), 14131–14145. https://doi.org/10.1080/07391102.2021.2001371
  • Sharma, V., Sharma, R., Gautam, D. S., Kuca, K., Nepovimova, E., & Martins, N. (2020). Role of Vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. Journal of Clinical Medicine, 9(4), 1176. https://doi.org/10.3390/jcm9041176
  • Subramani, R., Narayanasamy, M., & Feussner, K.-D. (2017). Plant-derived antimicrobials to fight against multi-drug-resistant human pathogens. 3 Biotech, 7(3), 1–15. https://doi.org/10.1007/s13205-017-0848-9
  • Tanwar, J., Das, S., Fatima, Z., & Hameed, S. (2014). Multidrug resistance: An emerging crisis. Interdisciplinary Perspectives on Infectious Diseases, 2014, 1–7. https://doi.org/10.1155/2014/541340
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021, October 12). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. Epub 2021 Sep 29. PMID: 34586825. https://doi.org/10.1021/acs.jctc.1c00645
  • Vijesh, A., Isloor, A. M., Telkar, S., Arulmoli, T., & Fun, H.-K. (2013). Molecular docking studies of some new imidazole derivatives for antimicrobial properties. Arabian Journal of Chemistry, 6(2), 197–204. https://doi.org/10.1016/j.arabjc.2011.10.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.