153
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Molecular insights in repurposing selective COX-2 inhibitor celecoxib against matrix metalloproteinases in potentiating delayed wound healing: a molecular docking and MMPB/SA based analysis of molecular dynamic simulations

, , , &
Pages 2437-2448 | Received 05 Jan 2023, Accepted 14 Apr 2023, Published online: 09 May 2023

References

  • Babine, R. E., & Bender, S. L. (1997). Molecular recognition of protein − ligand complexes: Applications to drug design. Chemical Reviews, 97(5), 1359–1472. https://doi.org/10.1021/cr960370z
  • Berendsen, H. J., Postma, J. V., Van Gunsteren, W. F., DiNola, A. R. H. J., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bu, X., Zhao, C., & Dai, X. (2011). Involvement of COX-2/PGE2 pathway in the upregulation of MMP-9 expression in pancreatic cancer. Gastroenterology Research and Practice, 2011, 214269. https://doi.org/10.1155/2011/214269
  • Dallakyan, S. (2008). 2010. PyRx-python prescription v. 0.8. Scripps Res Inst. https://pyrx.sourceforge.io/.
  • Fabre, B., Ramos, A., & de Pascual-Teresa, B. (2014). Targeting matrix metalloproteinases: Exploring the dynamics of the s1’ pocket in the design of selective, small molecule inhibitors: Miniperspective. Journal of Medicinal Chemistry, 57(24), 10205–10219. https://doi.org/10.1021/jm500505f
  • Futagami, A., Ishizaki, M., Fukuda, Y., Kawana, S., & Yamanaka, N. (2002). Wound healing involves induction of cyclooxygenase-2 expression in rat skin. Laboratory Investigation; A Journal of Technical Methods and Pathology, 82(11), 1503–1513. https://doi.org/10.1097/01.LAB.0000035024.75914.39
  • Gill, S. E., & Parks, W. C. (2008). Metalloproteinases and their inhibitors: Regulators of wound healing. The International Journal of Biochemistry & Cell Biology, 40(6–7), 1334–1347. https://doi.org/10.1016/j.biocel.2007.10.024
  • Gimeno, A., Beltrán-Debón, R., Mulero, M., Pujadas, G., & Garcia-Vallvé, S. (2020). Understanding the variability of the S1’ pocket to improve matrix metalloproteinase inhibitor selectivity profiles. Drug Discovery Today, 25(1), 38–57. https://doi.org/10.1016/j.drudis.2019.07.013
  • Grace Home - WIS Plasma Laboratory. Grace Home. https://plasma- gate.weizmann.ac.il/Grace/
  • Gross, J., & Lapiere, C. M. (1962). Collagenolytic activity in amphibian tissues: A tissue culture assay. Proceedings of the National Academy of Sciences of the United States of America, 48(6), 1014–1022. https://doi.org/10.1073/pnas.48.6.1014
  • Hunter, A. D. (1997). ACD/ChemSketch 1.0 (Freeware); ACD/ChemSketch 2.0 and its tautomers, dictionary, and 3D Plug-Ins; ACD/HNMR 2.0; ACD/CNMR 2.0. Journal of Chemical Education, 74(8), 905. https://doi.org/10.1021/ed074p905
  • Khokha, R., Murthy, A., & Weiss, A. (2013). Metalloproteinases and their natural inhibitors in inflammation and immunity. Nature Reviews. Immunology, 13(9), 649–665. https://doi.org/10.1038/nri3499
  • Kimata, M., Otani, Y., Kubota, T., Igarashi, N., Yokoyama, T., Wada, N., Yoshimizu, N., Fujii, M., Kameyama, K., Okada, Y., Kumai, K., & Kitajima, M. (2002). Matrix metalloproteinase inhibitor, marimastat, decreases peritoneal spread of gastric carcinoma in nude mice. Japanese Journal of Cancer Research : Gann, 93(7), 834–841. https://doi.org/10.1111/j.1349-7006.2002.tb01326.x
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Larkins, T. L., Nowell, M., Singh, S., & Sanford, G. L. (2006). Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer, 6(1), 181. https://doi.org/10.1186/1471-2407-6-181
  • Martins, V. L., Caley, M., & O'Toole, E. A. (2013). Matrix metalloproteinases and epidermal wound repair. Cell and Tissue Research, 351(2), 255–268. https://doi.org/10.1007/s00441-012-1410-z
  • Mude, L., Sanapalli, B. K. R., V, A. N., Singh, S. K., & Karri, V. V. S. R. (2021). Overview of in situ gelling injectable hydrogels for diabetic wounds. Drug Development Research, 82(4), 503–522. https://doi.org/10.1002/ddr.21788
  • Overall, C. M. (2001). Matrix metalloproteinase substrate binding domains, modules and exosites. Matrix Metalloproteinase Protocols, 151, 79–120. https://doi.org/10.1385/1-59259-046-2:079
  • Page-McCaw, A., Ewald, A. J., & Werb, Z. (2007). Matrix metalloproteinases and the regulation of tissue remodelling. Nature Reviews. Molecular Cell Biology, 8(3), 221–233. https://doi.org/10.1038/nrm2125
  • Parks, W. C., Wilson, C. L., & López-Boado, Y. S. (2004). Matrix metalloproteinases as modulators of inflammation and innate immunity. Nature Reviews. Immunology, 4(8), 617–629. https://doi.org/10.1038/nri1418
  • Puente, X. S., Sánchez, L. M., Overall, C. M., & López-Otín, C. (2003). Human and mouse proteases: A comparative genomic approach. Nature Reviews. Genetics, 4(7), 544–558. https://doi.org/10.1038/nrg1111
  • Ren, Y., Gu, G., Yao, M., & Vickie, R. D. (2014). Role of matrix metalloproteinases in chronic wound healing: Diagnostic and therapeutic implications. Chinese Medical Journal, 127(08), 1572–1581. https://doi.org/10.3760/cma.j.issn.0366-6999.20131179
  • Sabino, F., & Keller, U. A. D. (2015). Matrix metalloproteinases in impaired wound healing. Metalloproteinases in Medicine, 2, 1–8. https://doi.org/10.2147/MNM.S68420
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Schwarz, P. E. H., Gallein, G., Ebermann, D., Müller, A., Lindner, A., Rothe, U., Nebel, I. T., & Müller, G. (2013). Global diabetes survey—an annual report on quality of diabetes care. Diabetes. Diabetes Research and Clinical Practice, 100(1), 11–18. https://doi.org/10.1016/j.diabres.2012.11.008
  • Serra, R., Grande, R., Buffone, G., Molinari, V., Perri, P., Perri, A., Amato, B., Colosimo, M., & de Franciscis, S. (2016). Extracellular matrix assessment of infected chronic venous leg ulcers: Role of metalloproteinases and inflammatory cytokines. International Wound Journal, 13(1), 53–58. https://doi.org/10.1111/iwj.12225
  • Dassault Systèmes. (2020). Visualizer, D.S. Discovery Studio Visualizer, Dassault Systèmes BIOVIA, San Diego https://discover.3ds.com/discovery-studio-visualizer-download
  • Takeuchi, T., Hayashi, M., Tamita, T., Nomura, Y., Kojima, N., Mitani, A., Takeda, T., Hitaka, K., Kato, Y., Kamitani, M., Mima, M., Toki, H., Ohkubo, M., Nozoe, A., & Kakinuma, H. (2022). Discovery of aryloxyphenyl-heptapeptide hybrids as potent and selective matrix metalloproteinase-2 inhibitors for the treatment of idiopathic pulmonary fibrosis. Journal of Medicinal Chemistry, 65(12), 8493–8510. https://doi.org/10.1021/acs.jmedchem.2c00613
  • Tochowicz, A., Maskos, K., Huber, R., Oltenfreiter, R., Dive, V., Yiotakis, A., Zanda, M., Pourmotabbed, T., Bode, W., & Goettig, P. (2007). Crystal structures of MMP-9 complexes with five inhibitors: Contribution of the flexible Arg424 side-chain to selectivity. Journal of Molecular Biology, 371(4), 989–1006. https://doi.org/10.1016/j.jmb.2007.05.068
  • Vandenbroucke, R. E., & Libert, C. (2014). Is there new hope for therapeutic matrix metalloproteinase inhibition? Nature Reviews. Drug Discovery, 13(12), 904–927. https://doi.org/10.1038/nrd4390
  • Visse, R., & Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circulation Research, 92(8), 827–839. https://doi.org/10.1161/01
  • Wang, L., Chen, W., Xie, X., He, Y., & Bai, X. (2008). Celecoxib inhibits tumor growth and angiogenesis in an orthotopic implantation tumor model of human colon cancer. Experimental Oncology, 30(1), 42–51.
  • Wang, H., Dommert, F., & Holm, C. (2010). Optimizing working parameters of the smooth particle mesh Ewald algorithm in terms of accuracy and efficiency. The Journal of Chemical Physics, 133(3), 034117. https://doi.org/10.1063/1.3446812
  • Wojtowicz-Praga, S., Low, J., Marshall, J., Ness, E., Dickson, R., Barter, J., Sale, M., McCann, P., Moore, J., Cole, A., & Hawkins, M. J. (1996). Phase I trial of a novel matrix metalloproteinase inhibitor batimastat (BB-94) in patients with advanced cancer. Investigational New Drugs, 14(2), 193–202. https://doi.org/10.1007/bf00210790
  • Xue, M., & Jackson, C. J. (2015). Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Advances in Wound Care, 4(3), 119–136. https://doi.org/10.1089/wound.2013.0485

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.