311
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico design of novel CDK2 inhibitors through QSAR, ADMET, molecular docking and molecular dynamics simulation studies

ORCID Icon, , , , , , , & show all
Pages 13646-13662 | Received 23 Aug 2022, Accepted 04 Feb 2023, Published online: 19 May 2023

References

  • Advanced Chemistry Development. (2016). ACD/ChemSketch Freeware. Advanced chemistry development, Inc., Toronto, ON, Canada. http://www.acdlabs.com.
  • Al-Khafaji, K., & Taskin Tok, T. (2020). Molecular dynamics simulation, free energy landscape and binding free energy computations in exploration the anti-invasive activity of amygdalin against metastasis. Computer Methods and Programs in Biomedicine, 195, 105660. https://doi.org/10.1016/j.cmpb.2020.105660
  • Allouche, A. (2011). Software news and updates Gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc
  • Altekruse, S. F., McGlynn, K. A., & Reichman, M. E. (2009). Hepatocellular carcinoma incidence, mortality, and survival trends in the United States from 1975 to 2005. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 27(9), 1485–1491. https://doi.org/10.1200/JCO.2008.20.7753
  • Ayati, A., Emami, S., Asadipour, A., Shafiee, A., & Foroumadi, A. (2015). Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. European Journal of Medicinal Chemistry, 97, 699–718. https://doi.org/10.1016/j.ejmech.2015.04.015
  • Ballard, P., Brassil, P., Bui, K. H., Dolgos, H., Petersson, C., Tunek, A., & Webborn, P. J. H. (2012). The right compound in the right assay at the right time: An integrated discovery DMPK strategy. Drug Metabolism Reviews, 44(3), 224–252. https://doi.org/10.3109/03602532.2012.691099
  • Belhassan, A., Chtita, S., Lakhlifi, T., & Bouachrine, M. (2017). QSPR study of the retention/release property of odorant molecules in water using statistical methods. Orbital, 9, 234–247. https://doi.org/10.17807/orbital.v9i4.978
  • Borcea, A. M., Ionuț, I., Crișan, O., & Oniga, O. (2021). An overview of the synthesis and antimicrobial, antiprotozoal, and antitumor activity of thiazole and bisthiazole derivatives. Molecules, 26(3), 624. https://doi.org/10.3390/molecules26030624
  • Chang, S., Zhang, Z., Zhuang, X., Luo, J., Cao, X., Li, H., Tu, Z., Lu, X., Ren, X., & Ding, K. (2012). New thiazole carboxamides as potent inhibitors of Akt kinases. Bioorganic & Medicinal Chemistry Letters, 22(2), 1208–1212. https://doi.org/10.1016/j.bmcl.2011.11.080
  • ChemOffice. (2020). PerkinElmer Informatics 2020. http://www.cambridgesoft.com.
  • Chtita, S., Aouidate, A., Belhassan, A., Ousaa, A., Taourati, A. I., Elidrissi, B., Ghamali, M., Bouachrine, M., & Lakhlifi, T. (2020). QSAR study of N -substituted oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. New Journal of Chemistry, 44(5), 1747–1760. https://doi.org/10.1039/C9NJ04909F
  • Chtita, S., Belhassan, A., Bakhouch, M., Taourati, A. I., Aouidate, A., Belaidi, S., Moutaabbid, M., Belaaouad, S., Bouachrine, M., & Lakhlifi, T. (2021). QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemometrics and Intelligent Laboratory Systems : An International Journal Sponsored by the Chemometrics Society, 210, 104266. https://doi.org/10.1016/j.chemolab.2021.104266
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Darabi, H. R., Aghapoor, K., Balavar, Y., Mobedi, E., Farhangian, H., & Mohsenzadeh, F. (2008). Synthesis of 1,n-acyloxy thioamides by the Willgerodt-Kindler reaction: Chemoselectivity of 1,3-ketoesters over 1,3-diketones. Zeitschrift Für Naturforschung B, 63(8), 993–997. https://doi.org/10.1515/ZNB-2008-0812/MACHINEREADABLECITATION/RIS
  • Das, D., Sikdar, P., & Bairagi, M. (2016). Recent developments of 2-aminothiazoles in medicinal chemistry. European Journal of Medicinal Chemistry, 109, 89–98. https://doi.org/10.1016/j.ejmech.2015.12.022
  • De Azevedo, W. F., Leclerc, S., Meijer, L., Havlicek, L., Strnad, M., & Kim, S. H. (1997). Inhibition of cyclin-dependent kinases by purine analogues. Crystal structure of human cdk2 complexed with roscovitine. European Journal of Biochemistry, 243(1-2), 518–526. https://doi.org/10.1111/j.1432-1033.1997.0518a.x
  • Deng, R., Yang, F., Chang, S. H., Tang, J., Qin, J., Feng, G. K., Ding, K., & Zhu, X. F. (2012). DC120, a novel and potent inhibitor of AKT kinase, induces tumor cell apoptosis and suppresses tumor growth. Molecular Pharmacology, 82(2), 189–198. https://doi.org/10.1124/mol.111.077271
  • Dennington, R., Keith, T. A., & Millam, J. M. (2016). GaussView., Version 6.0. 16. Semichem Inc.
  • Dey, D., Biswas, P., Paul, P., Mahmud, S., Ema, T. I., Khan, A. A., Ahmed, S. Z., Hasan, M. M., Saim, A., Saikat, M., Fatema, B., Bibi, S., Rahman, A., & Kim, B. (2022). Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection : a computational drug development approach. Molecular Diversity, https://doi.org/10.1007/s11030-022-10491-9
  • Domínguez-Villa, F. X., Durán-Iturbide, N. A., & Ávila-Zárraga, J. G. (2021). Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorganic Chemistry, 106, 104497. https://doi.org/10.1016/j.bioorg.2020.104497
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • El-Naggar, A. M., Eissa, I. H., Belal, A., & El-Sayed, A. A. (2020). Design, eco-friendly synthesis, molecular modeling and anticancer evaluation of thiazol-5(4: H)-ones as potential tubulin polymerization inhibitors targeting the colchicine binding site. RSC Advances, 10(5), 2791–2811. https://doi.org/10.1039/c9ra10094f
  • El-Naggar, A. M., El-Hashash, M. A., & Elkaeed, E. B. (2021). Eco-friendly sequential one-pot synthesis, molecular docking, and anticancer evaluation of arylidene-hydrazinyl-thiazole derivatives as CDK2 inhibitors. Bioorganic Chemistry, 108, 104615. https://doi.org/10.1016/j.bioorg.2020.104615
  • El-Naggar, A. M., Zidan, A., Elkaeed, E. B., Taghour, M. S., & Badawi, W. A. (2022). Design, synthesis and docking studies of new hydrazinyl-thiazole derivatives as anticancer and antimicrobial agents. Journal of Saudi Chemical Society, 26(4), 101488. https://doi.org/10.1016/j.jscs.2022.101488
  • Eriksson, L., Jaworska, J., Worth, A. P., Cronin, M. T. D., McDowell, R. M., & Gramatica, P. (2003). Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives, 111(10), 1361–1375. https://doi.org/10.1289/ehp.5758
  • Estève, E., Bazin, D., Jouanneau, C., Rouzière, S., Bataille, A., Kellum, A., Provost, K., Mocuta, C., Reguer, S., Thiaudière, D., Jorissen, K., Rehr, J. J., Hertig, A., Rondeau, É., Letavernier, E., Daudon, M., & Ronco, P. (2016). How to assess the role of Pt and Zn in the nephrotoxicity of Pt anti-cancer drugs? An investigation combining μXRF and statistical analysis: Part I: On mice. Comptes Rendus Chim, 19(11–12), 1580–1585. https://doi.org/10.1016/j.crci.2016.03.014
  • Freire, E. (2009). A thermodynamic approach to the affinity optimization of drug candidates. Chemical Biology & Drug Design, 74(5), 468–472. https://doi.org/10.1111/j.1747-0285.2009.00880.x
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Cioslowski, D. J. (2009). Fox. Gaussian 09, Revision B.01. Gaussian, Inc.
  • Gabrielsson, J., Dolgos, H., Gillberg, P. G., Bredberg, U., Benthem, B., & Duker, G. (2009). Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: Strategic considerations. Drug Discovery Today, 14(7–8), 358–372. https://doi.org/10.1016/j.drudis.2008.12.011
  • Geierhaas, C. D., Nickson, A. A., Lindorff-Larsen, K., Clarke, J., & Vendruscolo, M. (2007). BPPred: A Web-based computational tool for predicting biophysical parameters of proteins. Protein Science : A Publication of the Protein Society, 16(1), 125–134. https://doi.org/10.1110/ps.062383807
  • George Priya Doss, C., & Nagasundaram, N. (2014). Molecular docking and molecular dynamics study on the effect of ERCC1 deleterious polymorphisms in ERCC1-XPF heterodimer. Applied Biochemistry and Biotechnology, 172(3), 1265–1281. https://doi.org/10.1007/s12010-013-0592-5
  • Gillis, E. P., Eastman, K. J., Hill, M. D., Donnelly, D. J., & Meanwell, N. A. (2015). Applications of fluorine in medicinal chemistry. Journal of Medicinal Chemistry, 58(21), 8315–8359. https://doi.org/10.1021/acs.jmedchem.5b00258
  • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. QSAR & Combinatorial Science, 26(5), 694–701. https://doi.org/10.1002/qsar.200610151
  • Gumbart, J., Khalili-Araghi, F., Sotomayor, M., & Roux, B. (2012). Constant electric field simulations of the membrane potential illustrated with simple systems. Biochimica et Biophysica Acta, 1818(2), 294–302. https://doi.org/10.1016/j.bbamem.2011.09.030
  • Hadaji, E., Bouachrine, M., Hamdani, H. E., & Ouammou, A. (2020). QSAR and molecular docking study of quinolin derivatives with topoisomerase I inhibitory properties as potential anticancer agents using statistical methods. Materials Today: Proceedings, https://doi.org/10.1016/j.matpr.2020.08.032
  • Hadni, H., & Elhallaoui, M. (2020). 2D and 3D-QSAR, molecular docking and ADMET properties: In silico studies of azaaurones as antimalarial agents. New Journal of Chemistry, 44(16), 6553–6565. https://doi.org/10.1039/C9NJ05767F
  • Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., & Zhang, P. (2019). In silico ADME and toxicity prediction of ceftazidime and its impurities. Frontiers in Pharmacology, 10, 434. https://doi.org/10.3389/fphar.2019.00434
  • Hann, M. M. (2011). Molecular obesity, potency and other addictions in drug discovery. MedChemComm, 2(5), 349–355. https://doi.org/10.1039/C1MD00017A
  • Hansch, C., Leo, A., Mekapati, S. B., & Kurup, A. (2004). QSAR and ADME. Bioorganic & Medicinal Chemistry, 12(12), 3391–3400. https://doi.org/10.1016/j.bmc.2003.11.037
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213–222. https://doi.org/10.1007/BF00533485
  • Heimbach, J. K., Kulik, L. M., Finn, R. S., Sirlin, C. B., Abecassis, M. M., Roberts, L. R., Zhu, A. X., Murad, M. H., & Marrero, J. A. (2018). AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology (Baltimore, Md.), 67(1), 358–380. https://doi.org/10.1002/hep.29086
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hill, A. P., & Young, R. J. (2010). Getting physical in drug discovery: A contemporary perspective on solubility and hydrophobicity, Drug. Drug Discovery Today. 15(15–16), 648–655. https://doi.org/10.1016/j.drudis.2010.05.016
  • Holohan, C., Van Schaeybroeck, S., Longley, D. B., & Johnston, P. G. (2013). Cancer drug resistance: An evolving paradigm. Nature Reviews. Cancer, 13(10), 714–726. https://doi.org/10.1038/nrc3599
  • Islam, R., Parves, M. R., Paul, A. S., Uddin, N., Rahman, M. S., Mamun, A. A., Hossain, M. N., Ali, M. A., & Halim, M. A. (2021). A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(9), 3213–3224. https://doi.org/10.1080/07391102.2020.1761883
  • Jin, Z., Wang, Y., Yu, X. F., Tan, Q. Q., Liang, S. S., Li, T., Zhang, H., Shaw, P. C., Wang, J., & Hu, C. (2020). Structure-based virtual screening of influenza virus RNA polymerase inhibitors from natural compounds: Molecular dynamics simulation and MM-GBSA calculation. Computational Biology and Chemistry, 85, 107241. https://doi.org/10.1016/j.compbiolchem.2020.107241
  • Johnson, T. W., Dress, K. R., & Edwards, M. (2009). Using the golden triangle to optimize clearance and oral absorption. Bioorganic & Medicinal Chemistry Letters, 19(19), 5560–5564. https://doi.org/10.1016/j.bmcl.2009.08.045
  • Kalantzi, L., Goumas, K., Kalioras, V., Abrahamsson, B., Dressman, J. B., & Reppas, C. (2006). Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharmaceutical Research, 23(1), 165–176. https://doi.org/10.1007/s11095-005-8476-1
  • Khaldan, A., Bouamrane, S., El-Mernissi, R., Maghat, H., Ajana, M. A., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2022). In silico design of new α-glucosidase inhibitors through 3D-QSAR study, molecular docking modeling and ADMET analysis. Moroccan Journal of Chemistry, 10, 022–036. https://doi.org/10.48317/IMIST.PRSM/morjchem-v10i1.31722
  • Khaldan, A., Bouamrane, S., El-Mernissi, R., Maghat, H., Ajana, M. A., Sbai, A., Bouachrine, M., & Lakhlifi, T. (2021). 3D-QSAR modeling, molecular docking and ADMET properties of benzothiazole derivatives as a-glucosidase inhibitors. Materials Today Proceedings, 45, 7643–7652. https://doi.org/10.1016/j.matpr.2021.03.114
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2021). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, 39(7), 2607–2616. https://doi.org/10.1080/07391102.2020.1751298
  • Kiralj, R., & Ferreira, M. M. C. (2009). Basic validation procedures for regression models in QSAR and QSPR studies. Theory and Application. https://doi.org/10.1590/S0103-50532009000400021
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lagadec, C., Vlashi, E., Della Donna, L., Meng, Y. H., Dekmezian, C., Kim, K., & Pajonk, F. (2010). Survival and self-renewing capacity of breast cancer initiating cells during fractionated radiation treatment. Breast Cancer Research, 12(1), 13. https://doi.org/10.1186/bcr2479
  • Lapenna, S., & Giordano, A. (2009). Cell cycle kinases as therapeutic targets for cancer. Nature Reviews. Drug Discovery, 8(7), 547–566. https://doi.org/10.1038/nrd2907
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review. B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PHYSREVB.37.785
  • Leeson, P. D., & Davis, A. M. (2004). Time-related differences in the physical property profiles of oral drugs. Journal of Medicinal Chemistry, 47(25), 6338–6348. https://doi.org/10.1021/jm049717d
  • Leeson, P. D., & Springthorpe, B. (2007). The influence of drug-like concepts on decision-making in medicinal chemistry. Nature Reviews. Drug Discovery, 6(11), 881–890. https://doi.org/10.1038/nrd2445
  • Leoni, A., Locatelli, A., Morigi, R., & Rambaldi, M. (2014). Novel thiazole derivatives: A patent review (2008-2012; Part 1). Expert Opinion on Therapeutic Patents, 24(2), 201–216. https://doi.org/10.1517/13543776.2014.858121
  • Lim, S., & Kaldis, P. (2013). Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development (Cambridge, England), 140(15), 3079–3093. https://doi.org/10.1242/dev.091744
  • Lindahl, E., Bjelkmar, P., Larsson, P., Cuendet, M. A., & Hess, B. (2010). Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. Journal of Chemical Theory and Computation, 6(2), 459–466. https://doi.org/10.1021/ct900549r
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution, Drug. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Llovet, J. M., Kelley, R. K., Villanueva, A., Singal, A. G., Pikarsky, E., Roayaie, S., Lencioni, R., Koike, K., Zucman-Rossi, J., & Finn, R. S. (2021). Hepatocellular carcinoma. Nature Reviews Disease Primers, 7. https://doi.org/10.1038/s41572-020-00240-3
  • Lovering, F., Bikker, J., & Humblet, C. (2009). Escape from flatland: Increasing saturation as an approach to improving clinical success. Journal of Medicinal Chemistry, 52(21), 6752–6756. https://doi.org/10.1021/jm901241e
  • Luk, K. C., Simcox, M. E., Schutt, A., Rowan, K., Thompson, T., Chen, Y., Kammlott, U., DePinto, W., Dunten, P., & Dermatakis, A. (2004). A new series of potent oxindole inhibitors of CDK2. Bioorganic & Medicinal Chemistry Letters, 14(4), 913–917. https://doi.org/10.1016/j.bmcl.2003.12.009
  • Malumbres, M., & Barbacid, M. (2005). Mammalian cyclin-dependent kinases. Trends in Biochemical Sciences, 30(11), 630–641. https://doi.org/10.1016/j.tibs.2005.09.005
  • MarvinSketch. (2020). Chem Axon 2020. https://chemaxon.com.
  • Maurer, T. S., Smith, D., Beaumont, K., & Di, L. (2020). Dose predictions for drug design. Journal of Medicinal Chemistry, 63(12), 6423–6435. https://doi.org/10.1021/acs.jmedchem.9b01365
  • McCubrey, J. A., Steelman, L. S., Abrams, S. L., Chappell, W. H., Russo, S., Ove, R., Milella, M., Tafuri, A., Lunghi, P., Bonati, A., Stivala, F., Nicoletti, F., Libra, M., Martelli, A. M., Montalto, G., & Cervello, M. (2009). Emerging Raf inhibitors. Expert Opinion on Emerging Drugs, 14(4), 633–648. https://doi.org/10.1517/14728210903232633
  • Meanwell, N. A. (2011). Improving drug candidates by design: A focus on physicochemical properties as a means of improving compound disposition and safety. Chemical Research in Toxicology, 24(9), 1420–1456. https://doi.org/10.1021/tx200211v
  • Morgans, A. K., Van Bommel, A. C. M., Stowell, C., Abrahm, J. L., Basch, E., Bekelman, J. E., Berry, D. L., Bossi, A., Davis, I. D., De Reijke, T. M., Denis, L. J., Evans, S. M., Fleshner, N. E., George, D. J., Kiefert, J., Lin, D. W., Matthew, A. G., McDermott, R., Payne, H., … Penson, D. F. (2015). Development of a standardized set of patient-centered outcomes for advanced prostate cancer: An international effort for a unified approach. European Urology, 68(5), 891–898. https://doi.org/10.1016/j.eururo.2015.06.007
  • Morigi, R., Locatelli, A., Leoni, A., & Rambaldi, M. (2015). Recent patents on thiazole derivatives endowed with antitumor activity, recent pat. Recent Patents on anti-Cancer Drug Discovery, 10(3), 280–297. https://doi.org/10.2174/1574892810666150708110432
  • Müller, K. (2014). Simple vector considerations to assess the polarity of partially fluorinated alkyl and alkoxy groups. Chimia, 68(6), 356–362. https://doi.org/10.2533/chimia.2014.356
  • Nair, A., Reece, K., Donoghue, M. B., Yuan, W., Rodriguez, L., Keegan, P., & Pazdur, R. (2021). FDA supplemental approval summary: Lenvatinib for the treatment of unresectable hepatocellular carcinoma. The Oncologist, 26(3), e484–e491. https://doi.org/10.1002/onco.13566
  • Nicolaou, K. C. (2014). Advancing the drug discovery and development process. Angewandte Chemie, 126(35), 9280–9292. https://doi.org/10.1002/ange.201404761
  • Nour, H., Abchir, O., Belaidi, S., Qais, F. A., Chtita, S., & Belaaouad, S. (2021). 2D-QSAR and molecular docking studies of carbamate derivatives to discover novel potent anti-butyrylcholinesterase agents for Alzheimer’s disease treatment, Bull. Korean Chemical Society. https://doi.org/10.1002/BKCS.12449
  • Ouassaf, M., Belaidi, S., Khamouli, S., Belaidi, H., & Chtita, S. (2021). Combined 3D-QSAR and molecular docking analysis of thienopyrimidine derivatives as Staphylococcus aureus inhibitors. Acta Chimica Slovenica, 68(2), 289–303. https://doi.org/10.17344/acsi.2020.5985
  • Ouyang, B., Knauf, J. A., Smith, E. P., Zhang, L., Ramsey, T., Yusuff, N., Batt, D., & Fagin, J. A. (2006). Inhibitors of Raf kinase activity block growth of thyroid cancer cells with RET/PTC or BRAF mutations in vitro and in vivo. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 12(6), 1785–1793. https://doi.org/10.1158/1078-0432.CCR-05-1729
  • Păunescu, E., Clavel, C. M., Nowak-Sliwinska, P., Griffioen, A. W., & Dyson, P. J. (2015). Improved angiostatic activity of dasatinib by modulation with hydrophobic chains, ACS. ACS Medicinal Chemistry Letters, 6(3), 313–317. https://doi.org/10.1021/ml500496u
  • Petrick, J. L., Florio, A. A., Znaor, A., Ruggieri, D., Laversanne, M., Alvarez, C. S., Ferlay, J., Valery, P. C., Bray, F., & McGlynn, K. A. (2020). International trends in hepatocellular carcinoma incidence, 1978–2012. International Journal of Cancer, 147(2), 317–330. https://doi.org/10.1002/ijc.32723
  • Pine, S. R., Ryan, B. M., Varticovski, L., Robles, A. I., & Harris, C. C. (2010). Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2195–2200. https://doi.org/10.1073/pnas.0909390107
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). Ascher, pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Popsavin, M., Kojić, V., Spaić, S., Svirčev, M., Bogdanović, G., Jakimov, D., Aleksić, L., & Popsavin, V. (2014). 2-Substituted thiazole-4-carboxamide derivatives as tiazofurin mimics: Synthesis and in vitro antitumour activity. Tetrahedron, 70(14), 2343–2350. https://doi.org/10.1016/j.tet.2014.02.035
  • Ritchie, T. J., & Macdonald, S. J. F. (2009). The impact of aromatic ring count on compound developability – are too many aromatic rings a liability in drug design? Drug Discovery Today, 14(21–22), 1011–1020. https://doi.org/10.1016/j.drudis.2009.07.014
  • Ritchie, T. J., Macdonald, S. J. F., Young, R. J., & Pickett, S. D. (2011). The impact of aromatic ring count on compound developability: Further insights by examining carbo- and hetero-aromatic and -aliphatic ring types. Drug Discovery Today, 16(3–4), 164–171. https://doi.org/10.1016/j.drudis.2010.11.014
  • Rouf, A., & Tanyeli, C. (2015). Bioactive thiazole and benzothiazole derivatives. European Journal of Medicinal Chemistry, 97, 911–927. https://doi.org/10.1016/j.ejmech.2014.10.058
  • Roy, K., Kar, S., & Ambure, P. (2015). On a simple approach for determining applicability domain of QSAR models. Chemometrics and Intelligent Laborary Systems. 145, 22–29. https://doi.org/10.1016/j.chemolab.2015.04.013
  • Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T. E., Cavalli, A., Ostermann, A., Heine, A., & Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature Communications, 9(1) https://doi.org/10.1038/s41467-018-05769-2
  • Serajuddin, A., Pudipeddi, M., & Stahl, P. (2002). Handbook of pharmaceutical salts. 376.
  • Sharma, J., Kumar Bhardwaj, V., Singh, R., Rajendran, V., Purohit, R., & Kumar, S. (2021). An in-silico evaluation of different bioactive molecules of tea for their inhibition potency against non structural protein-15 of SARS-CoV-2. Food Chemistry, 346, 128933. https://doi.org/10.1016/j.foodchem.2020.128933
  • Shen, S., Dean, D. C., Yu, Z., & Duan, Z. (2019). Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatology Research : The Official Journal of the Japan Society of Hepatology, 49(10), 1097–1108. https://doi.org/10.1111/hepr.13353
  • Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29. https://doi.org/10.3322/caac.21254
  • Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63(1), 11–30. https://doi.org/10.3322/caac.21166
  • Sittikul, P., Songtawee, N., Kongkathip, N., & Boonyalai, N. (2018). In vitro and in silico studies of naphthoquinones and peptidomimetics toward Plasmodium falciparum plasmepsin V. Biochimie, 152, 159–173. https://doi.org/10.1016/j.biochi.2018.07.002
  • Speciale, A., Muscarà, C., Molonia, M. S., Cimino, F., Saija, A., & Giofrè, S. V. (2021). Silibinin as potential tool against SARS-Cov-2: In silico spike receptor-binding domain and main protease molecular docking analysis, and in vitro endothelial protective effects. Phytotherapy Research : PTR, 35(8), 4616–4625. https://doi.org/10.1002/ptr.7107
  • Netzeva, T. I., Worth, A. P., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica, P., Jaworska, J. S., Kahn, S., Klopman, G., Marchant, C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R., Roberts, D. W., Schultz, T., Stanton, D. W., Van De Sandt, J. J. M., Tong, W., Veith, G., & Yang, C. (2005). Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, ATLA. Alternatives to Laboratory Animals : ATLA, 33(2), 155–173. https://doi.org/10.1177/026119290503300209
  • Tabti, K., Elmchichi, L., Sbai, A., Maghat, H., Bouachrine, M., Lakhlifi, T., & Ghosh, A. (2022). In silico design of novel PIN1 inhibitors by combined of 3D-QSAR, molecular docking, molecular dynamic simulation and ADMET studies. Journal of Molecular Structure. 1253, 132291. https://doi.org/10.1016/j.molstruc.2021.132291
  • Tong, J., Zhang, X., Luo, D., & Bian, S. (2021). Molecular design, molecular docking and ADMET study of cyclic sulfonamide derivatives as SARS-CoV-2 inhibitors. Chinese Journal of Analytical Chemistry, 49(12), 63–73. https://doi.org/10.1016/j.cjac.2021.09.006
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR Models - Strategies and Importance. International Journal of Drug Design & Discovery, 2, 511–519.
  • Vilar, S., Cozza, G., & Moro, S. (2008). Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and molecular docking to drug discovery. Current Topics in Medicinal Chemistry, 8(18), 1555–1572. https://doi.org/10.2174/156802608786786624
  • Wager, T. T., Kormos, B. L., Brady, J. T., Will, Y., Aleo, M. D., Stedman, D. B., Kuhn, M., & Chandrasekaran, R. Y. (2013). Improving the odds of success in drug discovery: Choosing the best compounds for in vivo toxicology studies. Journal of Medicinal Chemistry, 56(23), 9771–9779. https://doi.org/10.1021/jm401485p
  • Wold, S., Eriksson, L., & Clementi, S. (2008). Statistical Validation of QSAR Results. Chemometric Methods in Molecular Design, 2, 309–338. https://doi.org/10.1002/9783527615452.ch5
  • XLSTAT version 2019.1, XLSTAT. (n.d). Your data analysis solution. https://www.xlstat.com/fr/articles/xlstat-version-2019-1.
  • Young, R. J., Green, D. V. S., Luscombe, C. N., & Hill, A. P. (2011). Getting physical in drug discovery II: The impact of chromatographic hydrophobicity measurements and aromaticity. Drug Discovery Today, 16(17–18), 822–830. https://doi.org/10.1016/j.drudis.2011.06.001
  • Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.