457
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

3D-QSAR, docking and molecular dynamics simulations of novel Pyrazolo-pyridazinone derivatives as covalent inhibitors of FGFR1: a scientific approach for possible anticancer agents

, , , , , , , , , , , , & show all
Pages 2242-2256 | Received 06 Dec 2022, Accepted 10 Apr 2023, Published online: 22 May 2023

References

  • Akher, F. B., Farrokhzadeh, A., Olotu, F. A., Agoni, C., Soliman, M. E. J. O., & Chemistry, B. (2019). The irony of chirality–unveiling the distinct mechanistic binding and activities of 1-(3-(4-amino-5-(7-methoxy-5-methylbenzo [b] thiophen-2-yl)-7 H-pyrrolo [2, 3-d] pyrimidin-7-yl) pyrrolidin-1-yl) prop-2-en-1-one. Organic & Biomolecular Chemistry, 17(5), 1176–1190. https://doi.org/10.1039/c8ob02811g
  • Balupuri, A., Balasubramanian, P. K., & Cho, S. J. (2020). 3D-QSAR, docking, molecular dynamics simulation and free energy calculation studies of some pyrimidine derivatives as novel JAK3 inhibitors. Arabian Journal of Chemistry, 13(1), 1052–1078. https://doi.org/10.1016/j.arabjc.2017.09.009
  • Casadei, C., Dizman, N., Schepisi, G., Cursano, M. C., Basso, U., Santini, D., Pal, S. K., & De Giorgi, U. (2019). Targeted therapies for advanced bladder cancer: New strategies with FGFR inhibitors. Therapeutic Advances in Medical Oncology, 11, 1758835919890285. https://doi.org/10.1177/1758835919890285
  • Chohan, T. A., Chen, J.-J., Qian, H.-Y., Pan, Y.-L., & Chen, J.-Z. (2016a). Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Molecular bioSystems, 12(4), 1250–1268. https://doi.org/10.1039/c5mb00860c
  • Chohan, T. A., Qian, H.-Y., Pan, Y.-L., & Chen, J.-Z. (2016b). Molecular simulation studies on the binding selectivity of 2-anilino-4-(thiazol-5-yl)-pyrimidines in complexes with CDK2 and CDK7. Molecular bioSystems, 12(1), 145–161. https://doi.org/10.1039/c5mb00630a
  • Deng, Z., Chuaqui, C., & Singh, J. (2004). Structural interaction fingerprint (SIFt): A novel method for analyzing three-dimensional protein − ligand binding interactions. Journal of Medicinal Chemistry, 47(2), 337–344. https://doi.org/10.1021/jm030331x
  • Facchinetti, F., Hollebecque, A., Bahleda, R., Loriot, Y., Olaussen, K. A., Massard, C., & Friboulet, L. (2020). Facts and new hopes on selective FGFR inhibitors in solid tumors. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 26(4), 764–774. https://doi.org/10.1158/1078-0432.CCR-19-2035
  • Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. J. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
  • Ghedini, G. C., Ronca, R., Presta, M., & Giacomini, A. (2018). Future applications of FGF/FGFR inhibitors in cancer. Expert Review of Anticancer Therapy, 18(9), 861–872. https://doi.org/10.1080/14737140.2018.1491795
  • Hou, T., Wang, J., Zhang, W., & Xu, X. J. (2007). ADME evaluation in drug discovery. 7. Prediction of oral absorption by correlation and classification. Journal of Chemical Information and Modeling, 47(1), 208–218.
  • Jasper, J. B., Humbeck, L., Brinkjost, T., & Koch, O. (2018). A novel interaction fingerprint derived from per atom score contributions: Exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. Journal of Cheminformatics, 10(1), 1–13. https://doi.org/10.1186/s13321-018-0264-0
  • Kalyukina, M., Yosaatmadja, Y., Middleditch, M. J., Patterson, A. V., Smaill, J. B., & Squire, C. J. J. C. (2019). TAS‐120 cancer target binding: Defining reactivity and revealing the first fibroblast growth factor receptor 1 (FGFR1) irreversible structure. ChemMedChem, 14(4), 494–500. https://doi.org/10.1002/cmdc.201800719
  • Kelleher, F. C., O'Sullivan, H., Smyth, E., McDermott, R., & Viterbo, A. (2013). Fibroblast growth factor receptors, developmental corruption and malignant disease. Carcinogenesis, 34(10), 2198–2205. https://doi.org/10.1093/carcin/bgt254
  • Li, X., Guise, C. P., Taghipouran, R., Yosaatmadja, Y., Ashoorzadeh, A., Paik, W.-K., Squire, C. J., Jiang, S., Luo, J., & Xu, Y. J. (2017). 2-Oxo-3, 4-dihydropyrimido [4, 5-d] pyrimidinyl derivatives as new irreversible pan fibroblast growth factor receptor (FGFR) inhibitors. European Journal of Medicinal Chemistry, 135: 531–543. https://doi.org/10.1016/j.ejmech.2017.04.049
  • Liu, F.-T., Li, N.-G., Zhang, Y.-M., Xie, W.-C., Yang, S.-P., Lu, T., & Shi, Z.-H. (2020). Recent advance in the development of novel, selective and potent FGFR inhibitors. European Journal of Medicinal Chemistry, 186, 111884. https://doi.org/10.1016/j.ejmech.2019.111884
  • Schneider, G., Neidhart, W., Giller, T., & Schmid, G. (1999). “Scaffold‐hopping” by topological pharmacophore search: A contribution to virtual screening. Angewandte Chemie International Edition, 38(19), 2894–2896. https://doi.org/10.1002/(SICI)1521-3773(19991004)38:19<2894::AID-ANIE2894>3.0.CO;2-F
  • Tan, L., Wang, J., Tanizaki, J., Huang, Z., Aref, A. R., Rusan, M., Zhu, S.-J., Zhang, Y., Ercan, D., & Liao, R. G. (2014). Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 111(45), E4869–E4877.
  • Touat, M., Ileana, E., Postel-Vinay, S., André, F., & Soria, J.-C. (2015). Targeting FGFR signaling in cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(12), 2684–2694. https://doi.org/10.1158/1078-0432.CCR-14-2329
  • Venhorst, J., Núnez, S., Terpstra, J. W., & Kruse, C. G. (2008). Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. Journal of Medicinal Chemistry, 51(11), 3222–3229. https://doi.org/10.1021/jm8001058
  • Wang, Y., Dai, Y., Wu, X., Li, F., Liu, B., Li, C., Liu, Q., Zhou, Y., Wang, B., Zhu, M., Cui, R., Tan, X., Xiong, Z., Liu, J., Tan, M., Xu, Y., Geng, M., Jiang, H., Liu, H., Ai, J., & Zheng, M. (2019). Discovery and development of a series of pyrazolo [3, 4-d] pyridazinone compounds as the novel covalent fibroblast growth factor receptor inhibitors by the rational drug design. Journal of Medicinal Chemistry, 62(16), 7473–7488. https://doi.org/10.1021/acs.jmedchem.9b00510
  • Wu, X., Dai, M., Cui, R., Wang, Y., Li, C., Peng, X., Zhao, J., Wang, B., Dai, Y., Feng, D., Yang, T., Jiang, H., Geng, M., Ai, J., Zheng, M., & Liu, H. (2021). Design, synthesis and biological evaluation of pyrazolo [3, 4-d] pyridazinone derivatives as covalent FGFR inhibitors. Acta Pharmaceutica Sinica. B, 11(3), 781–794. https://doi.org/10.1016/j.apsb.2020.09.002
  • Yu, T., Yang, Y., Liu, Y., Zhang, Y., Xu, H., Li, M., Ponnusamy, M., Wang, K., Wang, J.-X., & Li, P.-F. (2017). A FGFR1 inhibitor patent review: Progress since 2010. Expert Opinion on Therapeutic Patents, 27(4), 439–454. https://doi.org/10.1080/13543776.2017.1272574

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.