189
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

In silico investigation and potential therapeutic approaches of isoquinoline alkaloids for neurodegenerative diseases: computer-aided drug design perspective

, , , , , , & show all
Pages 14484-14496 | Received 27 Dec 2022, Accepted 13 Feb 2023, Published online: 15 May 2023

References

  • Ahmed, S. A., Abdelrheem, D. A., Abd El-Mageed, H. R., Mohamed, H. S., Rahman, A. A., Elsayed, K. N., & Ahmed, S. A. (2020). Destabilizing the structural integrity of COVID-19 by caulerpin and its derivatives along with some antiviral drugs: An in silico approaches for a combination therapy. Structural Chemistry, 31(6), 2391–2412.
  • Al-Sha’er, M. A., Basheer, H. A., & Taha, M. O. (2023). Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores. Molecular Diversity, 27(1), 443–462. https://doi.org/10.1007/s11030-022-10434-4
  • Annadurai, N., Agrawal, K., Dzubak, P., Hajduch, M., & Das, V. (2017). Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer’s disease. Cellular and Molecular Life Sciences : CMLS, 74(22), 4159–4169. https://doi.org/10.1007/s00018-017-2574-1
  • Anwar, S., Shamsi, A., Kar, R. K., Queen, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Structural and biochemical investigation of MARK4 inhibitory potential of cholic acid: Towards therapeutic implications in neurodegenerative diseases. International Journal of Biological Macromolecules, 161, 596–604. https://doi.org/10.1016/j.ijbiomac.2020.06.078
  • Beghini, A., Magnani, I., Roversi, G., Piepoli, T., Di Terlizzi, S., Moroni, R. F., Pollo, B., Fuhrman Conti, A. M., Cowell, J. K., Finocchiaro, G., & Larizza, L. (2003). The neural progenitor-restricted isoform of the MARK4 gene in 19q13. 2 is upregulated in human gliomas and overexpressed in a subset of glioblastoma cell lines. Oncogene, 22(17), 2581–2591. https://doi.org/10.1038/sj.onc.1206336
  • Chiow, K. H., Phoon, M. C., Putti, T., Tan, B. K. H., & Chow, V. T. (2016). Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pacific Journal of Tropical Medicine, 9(1), 1–7. https://doi.org/10.1016/j.apjtm.2015.12.002
  • Drewes, G., Ebneth, A., Preuss, U., Mandelkow, E. M., & Mandelkow, E. (1997). MARK, a novel family of protein kinases that phosphorylate microtubule-associated proteins and trigger tnicrotubule disruption. Cell, 89(2), 297–308. https://doi.org/10.1016/s0092-8674(00)80208-1
  • Evans, D. J., & Holian, B. L. (1985). The nose–hoover thermostat. The Journal of Chemical Physics, 83(8), 4069–4074. https://doi.org/10.1063/1.449071
  • Feng, M., Tian, L., Gan, L., Liu, Z., & Sun, C. (2014). MARK4 promotes adipogenesis and triggers apoptosis in 3T3‐L1 adipocytes by activating JNK1 and inhibiting p38MAPK pathways. Biology of the Cell, 106(9), 294–307. https://doi.org/10.1111/boc.201400004
  • Hayden, E. Y., Putman, J., Nunez, S., Shin, W. S., Oberoi, M., Charreton, M., Dutta, S., Li, Z., Komuro, Y., & Joy, M. T. (2019). Ischemic axonal injury up-regulates MARK4 in cortical neurons and primes tau phosphorylation and aggregation. Acta Neuropathologica Communications, 7, 135.
  • Hoda, N., Naz, H., Jameel, E., Shandilya, A., Dey, S., Hassan, M. I., Ahmad, F., & Jayaram, B. (2016). Curcumin specifically binds to the human calcium–calmodulin-dependent protein kinase IV: Fluorescence and molecular dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 34(3), 572–584. https://doi.org/10.1080/07391102.2015.1046934
  • Hurov, J., & Piwnica-Worms, H. (2007). The Par-1/MARK family of protein kinases: From polarity to metabolism. Cell Cycle (Georgetown, Tex.), 6(16), 1966–1969. https://doi.org/10.4161/cc.6.16.4576
  • Jenardhanan, P., Mannu, J., & Mathur, P. P. (2014). The structural analysis of MARK4 and the exploration of specific inhibitors for the MARK family: A computational approach to obstruct the role of MARK4 in prostate cancer progression. Molecular bioSystems, 10(7), 1845–1868. https://doi.org/10.1039/c3mb70591a
  • Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Development and testing of the OPLS all atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 118(45), 11225–11236. https://doi.org/10.1021/ja9621760
  • Kalibaeva, G., Ferrario, M., & Ciccotti, G. (2003). Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial. Molecular Physics, 101(6), 765–778. https://doi.org/10.1080/0026897021000044025
  • Kar, R., Suryadevara, P., Sahoo, B., Sahoo, G., Dikhit, M., & Das, P. (2013). Exploring novel KDR inhibitors based on pharmaco-informatics methodology. SAR and QSAR in Environmental Research, 24(3), 215–234. https://doi.org/10.1080/1062936X.2013.765912
  • Katopodis, P., Chudasama, D., Wander, G., Sales, L., Kumar, J., Pandhal, M., Anikin, V., Chatterjee, J., Hall, M., & Karteris, E. (2019). Kinase inhibitors and ovarian cancer. Cancers, 11(9), 1357. https://doi.org/10.3390/cancers11091357
  • Khan, P., Queen, A., Mohammad, T., Khan, N. S., Hafeez, Z. B., Hassan, M. I., Ali., & S., Smita. (2019). Identification of α-mangostin as a potential inhibitor of microtubule affinity regulating kinase 4. Journal of Natural Products, 82(8), 2252–2261. ‏ https://doi.org/10.1021/acs.jnatprod.9b00372
  • Liu, Z., Gan, L., Chen, Y., Luo, D., Zhang, Z., Cao, W., Zhou, Z., Lin, X., & Sun, C. (2016). MARK4 promotes oxidative stress and inflammation via binding to PPARγ and activating NF-κB pathway in mice adipocytes. Scientific Reports, 6, 21382. https://doi.org/10.1038/srep21382
  • Liu, J., Lu, Y., Li, G., Xiao, M., Yang, G., & Pan, Y. (2021). Elucidation the binding mechanism of Nelumbo nucifera-derived isoquinoline alkaloids as Rho-kinase 1 inhibitors by molecular docking and dynamic simulation. Journal of Biomolecular Structure and Dynamics, 39(2), 379–394. https://doi.org/10.1080/07391102.2020.1714484
  • Maestro-Release, D. (2017). Desmond molecular dynamics system. Maestro-Desmond interoperability tools. D. E. Shaw Research.
  • Mandelkow, E.-M., Thies, E., Trinczek, B., Biernat, J., & Mandelkow, E. (2004). MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. The Journal of Cell Biology, 167(1), 99–110. https://doi.org/10.1083/jcb.200401085
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Martyna, G. J. (1994). Remarks on “Constant-temperature molecular dynamics with momentum conservation”. Physical Review. E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 50(4), 3234–3236. https://doi.org/10.1103/physreve.50.3234
  • Miller, B. R., Dwight McGee, T., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for End-State free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohammad, T., Arif, K., Alajmi, M. F., Hussain, A., Islam, A., Rehman, M. T., & Hassan, I. (2021). Identification of high-affinity inhibitors of pyruvate dehydrogenase kinase-3: Towards therapeutic management of cancer. Journal of Biomolecular Structure and Dynamics. 39(2), 586–594. https://doi.org/10.1080/07391102.2020.1711810
  • Mohammad, T., Batra, S., Dahiya, R., Baig, M. H., Rather, I. A., Dong, J.-J., & Hassan, I. (2019). Identification of high-affinity inhibitors of cyclin-dependent kinase 2 towards anticancer therapy. Molecules, 24(24), 4589. https://doi.org/10.3390/molecules24244589
  • Mohammad, T., Khan, F. I., Lobb, K. A., Islam, A., Ahmad, F., & Hassan, M. (2019). Identification and evaluation of bioactive natural products as potential inhibitors of human microtubule affinity-regulating kinase 4 (MARK4). Journal of Biomolecular Structure and Dynamics, 37(7), 1813–1829. https://doi.org/10.1080/07391102.2018.1468282
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoidregulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Naz, F., Anjum, F., Islam, A., Ahmad, F., & Hassan, M. I. (2013). Microtubule affinity regulating kinase 4: Structure, function, and regulation. Cell Biochemistry and Biophysics, 67(2), 485–499. https://doi.org/10.1007/s12013-013-9550-7
  • Naz, F., Khan, F. I., Mohammad, T., Khan, P., Manzoor, S., Hasan, G. M., Lobb, K. A., Luqman, S., Islam, A., Ahmad, F., & Hassan, M. I. (2018). Investigation of molecular mechanism of recognition between citral and MARK4: A newer therapeutic approach to attenuate cancer cell progression. International Journal of Biological Macromolecules, 107(Pt B), 2580–2589. https://doi.org/10.1016/j.ijbiomac.2017.10.143
  • Naz, F., Shahbaaz, M., Bisetty, K., Islam, A., Ahmad, F., & Hassan, M. I. (2015). Designing new kinase inhibitor derivatives as therapeutics against common complex diseases: structural basis of microtubule affinity-regulating kinase 4 (MARK4) inhibition. Omics : A Journal of Integrative Biology, 19(11), 700–711. https://doi.org/10.1089/omi.2015.0111
  • Noble, M. E., Endicott, J. A., & Johnson, L. N. (2004). Protein kinase inhibitors: Insights into drug design from structure. Science (New York, N.Y.), 303(5665), 1800–1805. https://doi.org/10.1126/science.1095920
  • Noolvi, M. N., & Patel, H. M. (2013). A comparative QSAR analysis and molecular docking studies of quinazoline derivatives as tyrosine kinase (EGFR) inhibitors: A rational approach to anticancer drug design. Journal of Saudi Chemical Society, 17(4), 361–379. https://doi.org/10.1016/j.jscs.2011.04.017
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. pp. https://doi.org/10.1002/prot.20033
  • Patel, H., Jadhav, H., Ansari, I., Pawara, R., & Surana, S. (2020). Corrigendum to" Pyridine and nitro-phenyl linked 1, 3, 4-thiadiazoles as MDR-TB inhibitors"[Eur. J. Med. Chem. 167 (2019) 1-9]. European Journal of Medicinal Chemistry, 200, 112413. https://doi.org/10.1016/j.ejmech.2020.112413
  • Sack, J. S., Gao, M., Kiefer, S. E., Myers, J. E., Newitt, J. A., Wu, S., & Yan, C. (2016). Crystal structure of microtubule affinity-regulating kinase 4 catalytic domain in complex with a pyrazolopyrimidine inhibitor. Acta Crystallographica. Section F, Structural Biology Communications, 72(Pt 2), 129–134. https://doi.org/10.1107/S2053230X15024747
  • Shamsi, A., Anwar, S., Mohammad, T., Alajmi, M. F., Hussain, A., Rehman, M. T., Hasan, G. M., Islam, A., & Hassan, M. I. (2020). MARK4 inhibited by AChE inhibitors, donepezil and Rivastigmine tartrate: Insights into Alzheimer’s disease therapy. Biomolecules, 10(5), 789. ‏ https://doi.org/10.3390/biom10050789
  • Sun, W., Lee, S., Huang, X., Liu, S., Inayathullah, M., Kim, K.-M., Tang, H., Ashford, J. W., & Rajadas, J. (2016). Attenuation of synaptic toxicity and MARK4/PAR1-mediated Tau phosphorylation by methylene blue for Alzheimer’s disease treatment. Scientific Reports, 6, 34784. https://doi.org/10.1038/srep34784
  • Sun, C., Tian, L., Nie, J., Zhang, H., Han, X., & Shi, Y. (2012). Inactivation of MARK4, an AMP-activated protein kinase (AMPK)-related kinase, leads to insulin hypersensitivity and resistance to diet-induced obesity. The Journal of Biological Chemistry, 287(45), 38305–38315. https://doi.org/10.1074/jbc.M112.388934
  • Tian, L., Wen, A., Dong, S., & Yan, P. (2019). Molecular characterization of microtubule affinity-regulating kinase4 from sus scrofa and promotion of lipogenesis in primary porcine placental trophoblasts. International Journal of Molecular Sciences, 20(5), 1206. https://doi.org/10.3390/ijms20051206
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P., & Moreno, E. (2012). gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.5281/zenodo.4569307
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Yadava, U., Singh, M., & Roychoudhury, M. (2013). Pyrazolo[3,4-d]pyrimidines as inhibitor of anti-coagulation and inflammation activities of phospholipase A2: Insight from molecular docking studies. Journal of Biological Physics, 39(3), 419–438. https://doi.org/10.1007/s10867-013-9299https://doi.org/10.1080/07391102.2020.1844801
  • Yu, W., Polepalli, J., Wagh, D., Rajadas, J., Malenka, R., & Lu, B. (2012). A critical role for the PAR-1/MARK-tau axis in mediating the toxic effects of Aβ on synapses and dendritic spines. Human Molecular Genetics, 21(6), 1384–1390. https://doi.org/10.1093/hmg/ddr576

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.