253
Views
3
CrossRef citations to date
0
Altmetric
Research Article

2-Hydroxymethyl-18-crown-6 as an efficient organocatalyst for α-aminophosphonates synthesized under eco-friendly conditions, DFT, molecular docking and ADME/T studies

, , , , &
Pages 3332-3348 | Received 17 Feb 2023, Accepted 04 May 2023, Published online: 15 May 2023

References

  • Aissa, R., Guezane-Lakoud, S., Gali, L., Toffano, M., Ignaczak, A., Adamiak, M., Merabet-Khelassi, M., Guillot, R., & Aribi-Zouioueche, L. (2022). New promising generation of phosphates α-aminophosphonates: Design, Synthesis, In-vitro biological evaluation and Computational study. Journal of Molecular Structure, 1247(17), 131336. https://doi.org/10.1016/j.molstruc.2021.131336
  • Aissa, R., Guezane-Lakoud, S., Kolodziej, E., Toffano, M., & Aribi-Zouioueche, L. (2019). Diastereoselective synthesis of bis(a-aminophosphonates) by lipase catalytic promiscuity. New Journal of Chemistry, 43(21), 8153–8159. https://doi.org/10.1039/C8NJ06235H
  • Aissa, R., Guezane-Lakoud, S., Toffano, M., Gali, L., & Aribi-Zouioueche, L. (2021). Fiaud’s acid, a novel organocatalyst for diastereoselective bis α-aminophosphonates synthesis with in-vitro biological evaluation of antifungal, antioxidant and enzymes inhibition potential. Bioorganic & Medicinal Chemistry Letters, 41(1), 128000. https://doi.org/10.1016/j.bmcl.2021.128000
  • Asiri, A. M., Karabacak, M., Kurt, M., & Alamry, K. A. (2011). Synthesis, molcecular conformation, vibrational and electronic transition, isometric chemical shift, polarizability and hyperpolarizability analysis of 3-(4-Methoxy-phenyl)-2-(4-nitro phenyl)-acrylonitrile: A combined experiment and theoretical analysis. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 82(1), 444–455. https://doi.org/10.1016/j.saa.2011.07.076
  • Arulraj, R., Nurulhuda, M., Wee Joo, C., Mouna, M., Sivakumar, S., & Noureddine, I. (2022a). 3-Chloro-3-methyl-2,6-diarylpiperidin-4-ones as anti-cancer agents: Synthesis, biological evaluation, molecular docking, and in silico ADMET prediction. Biomolecules, 12(8), 1093. https://doi.org/10.3390/biom12081093
  • Arulraj, R., Ahlam Roufieda, G., Sivakumar, S., Anitha, K., Rajkumar, K., Nourdine, B., Abdelkader, C., & Manikandan, E. (2022b). Synthesis, vibrational spectra, Hirshfeld surface analysis, DFT calculations, and in silico ADMET study of 3-(2-chloroethyl)-2,6-bis(4-fluorophenyl)piperidin-4-one: A potent anti-Alzheimer agent. Journal of Molecular Structure, 1269, 133845. https://doi.org/10.1016/j.molstruc.2022.133845
  • Alves, V. M., Muratov, E., Fourches, D., Strickland, J., Kleinstreuer, N., Andrade, C. H., & Tropsha, A. (2015). Predicting chemically-induced skin reactions. Part II: QSAR models of skin permeability and the relationships between skin permeability and skin sensitization. Toxicology and Applied Pharmacology, 284(2), 262–272. https://doi.org/10.1016/j.taap.2014.12.013
  • Abdelrheem, D. A., Rahman, A. A., Elsayed, N. M., Abd El-Mageed, H. R., Mohamed, H. S., & Ahmed, S. A. (2021). Isolation, characterization, in vitro anticancer activity, DFT calculations, molecular docking, bioactivity score, drug-likeness and admet studies of eight phytoconstituents from brown alga sargassum platycarpum. Journal of Molecular Structure, 1225, 129245. https://doi.org/10.1016/j.molstruc.2020.129245
  • Abraham, C. S., Prasana, J. C., & Muthu, S. (2017). Quantum mechanical, spectroscopic and docking studies of 2-amino-3-bromo-5-nitropyridine by density functional method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 181, 153–163. https://doi.org/10.1016/j.saa.2017.03.045
  • Aita, S., Badavath, V. N., Gundluru, M., Sudileti, M., Nemallapudi, B. R., Gundala, S., Zyryanov, G. V., Chamarti, N. R., & Cirandur, S. R. (2021). Novel α-aminophosphonates of imatinib Intermediate: Synthesis, anticancer Activity, human Abl tyrosine kinase Inhibition, ADME and toxicity prediction. Bioorganic Chemistry, 109, 104718. https://doi.org/10.1016/j.bioorg.2021.104718
  • Bonarska, D., Kleszczynska, H., & Sarapuk, J. (2002). Antioxidative activity of some phenoxy and organophosphorous compounds. Cellular & Molecular Biology Letters, 7(3), 929–935.
  • Becke, A. D. (1993). Density-functional thermochemistry III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Cinquini, M., & Tundo, P. (1976). Synthesis of alkyl-substituted crown ethers: efficient phase-transfer catalysts. Synthesis, 1976(08), 516–519. https://doi.org/10.1055/s-1976-24101
  • Chung-Kiak, P., & Han-Ping, D. S. (2016). Density functional based tight binding (DFTB) study on the thermal evolution of amorphous carbon. Graphene, 5, 51–54. https://doi.org/10.4236/graphene.2016.52006
  • Cytlak, T., Kaźmierczak, M., Skibińska, M., & Koroniak, H. (2017). Latest achievements in the preparation of fluorinated aminophosphonates and aminophosphonic acids. Phosphorus, Sulfur, and Silicon and the Related Elements, 192(6), 602–620. https://doi.org/10.1080/10426507.2017.1287706
  • Cheng, F., Yu, Y., Shen, J., Yang, L., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2011). Classification of cytochrome P450 inhibitors and noninhibitors using combined classifiers. Journal of Chemical Information and Modeling, 51(5), 996–1011. https://doi.org/10.1021/ci200028n
  • Dennington, R., Keith, T., Millam, J., & Inc, S. (2009). V.5. GaussView.
  • Dix, J. P., Wittenbrink-Dix, A., & Vögtle, F. (1980). Ion-selective steering of the reaction rate and of the catalyst activity by crown-ether complexation. Naturwissenschaften, 67(2), 91–93. https://doi.org/10.1007/BF01054694
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Domingo, L. R., Aurell, M. J., Pérez, P., & Contreras, R. (2002). Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron, 58(22), 4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6
  • Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Elfily, A. A. (2020). Ribavirin, sofosbuvir remdesivir, galidesivir, and tenofovir against SARS-Cov-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sciences, 253, 117592. https://doi.org/10.1016/j.lfs.2020.117592
  • Ferrah, M., Samia, G.-L., Bendjeffal, H., Aissa, R., Merabet-Khelassi, M., Toffano, M., & Aribi-Zouioueche, L. (2022). Full factorial optimization of α-aminophosphonates synthesis using diphenylphosphinic acid as efficientorganocatalyst. Reaction Kinetics, Mechanisms and Catalysis. https://doi.org/10.1007/s11144-022-02329-0
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Gaussian, D. J. (2009). 09, Revision A.02. Gaussian, Inc.
  • Feng, L., Yang, H., Cui, X., Chen, D., & Li, G. (2018). Experimental and theoretical investigation on corrosion inhibitive properties of steel rebar by a newly designed environmentally friendly inhibitor formula. RSC Advances, 8(12), 6507–6518. https://doi.org/10.1039/C7RA13045G
  • Grzywa, R., & Sieńczyk, M. (2013). Phosphonic esters and their application of protease control. Current Pharmaceutical Design, 19(6), 1154–1178. https://doi.org/10.2174/1381612811319060014
  • Guezane-Lakoud, S., Lecouvey, M., Berrebah, H., & Aouf, N. E. (2015). Synthesis of chiral phosphonoacetamides and their toxic effects on Paramecium sp. Organic Communications, 8, 1–8.
  • Guezane-Lakoud, S., Toffano, M., & Aribi-Zouioueche, L. (2017). Promiscuous lipase catalyzed a new P–C bond formation: Green and efficient protocol for one-pot synthesis of α-aminophosphonates. Heteroatom Chemistry, 28(6), e21408. https://doi.org/10.1002/hc.21408
  • Heydari, A., Hamadi, H., & Pourayoubi, M. (2007). A new one-pot synthesis of α-amino phosphonates catalyzed by H3PW12O40. Catalysis Communications, 8(8), 1224–1226. https://doi.org/10.1016/j.catcom.2006.11.008
  • Hyun, M. H. (2012). Chromatographic separations and analysis: Chiral crown ether-based chiral stationary phases. In E. M. Carreira & H. Yamamoto (Eds.), Comprehensive chirality (Vol. 8, pp. 263–285). ISBN 9780080951683 Elsevier. https://doi.org/10.1016/B978-0-08-095167-6.00827-2
  • Jing-Zi, L., Bao-An, S., Hui-Tao, F., Pinaki, S. B., Wen-Ting, W., Song, Y., Weiming, X., Jian, W., Lin-Hong, J., Xue, W., De-Yu, H., & Song, Z. (2010). Synthesis and in vitro study of pseudo-peptide thioureas containing α-aminophosphonate moiety as potential antitumor agents. European Journal of Medicinal Chemistry, 45(11), 5108–5112. https://doi.org/10.1016/j.ejmech.2010.08.021
  • Kohn, W., & Sham, L. J. (1965). Quantum density oscillations in an inhomogeneous electron gas. Physical Review, 137(6A), A1697–A1705. https://doi.org/10.1103/PhysRev.137.A1697
  • Kandula, M. K. R., Shaik, M. S., Nagaripati, S., Kotha, P., Bakthavatchala, R., Sravya, G., Grigory, Z., & Cirandur, S. R. (2017). One-pot green synthesis and cytotoxicity of new α-aminophosphonates. Research on Chemical Intermediates, 43(12), 7087–7103. https://doi.org/10.1007/s11164-017-3060-y
  • Kosar, B., & Albayrak, C. (2011). Spectroscopic investigations and quantium chemical computational study of (E)-4-methoxy-2-[(p-tolylimino) methyl phenyl]. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 78(1), 160–167. https://doi.org/10.1016/j.saa.2010.09.016
  • Kavitha, N., & Alivelu, M. (2021). Investigation of structures, QTAIM, RDG, ADMET, and docking properties of SASC compound using experimental and theoretical approach. Computational and Theoretical Chemistry, 1201, 113287. https://doi.org/10.1016/j.comptc.2021.113287
  • Kerkour, R., Chafai, N., Moumeni, O., & Chafaa, S. (2023). Novel α-aminophosphonates derivates synthesis, theoretical calculation, Molecular docking, and in silico prediction of potential inhibition of SARS-CoV-2. Journal of Molecular Structure, 1272, 134196. https://doi.org/10.1016/j.molstruc.2022.134196
  • Lakoud, S. G., Merabet-Khelassi, M., & Aribi-Zouioueche, L. (2016). NiSO4-6H2O as a new, efficient, and reusable catalyst for the α-aminophosphonates synthesis under mild and eco-friendly conditions. Research on Chemical Intermediates, 42(5), 4403–4415. https://doi.org/10.1007/s11164-015-2283-z
  • Laschat, S., & Kunz, H. (1992). Carbohydrates as chiral templates: Stereoselective synthesis of (R)- and (S)-α-aminophosphonic acid derivatives. Synthesis, 1992(1/2), 90–95. https://doi.org/10.1055/s-1992-34155
  • Lamb, J. D., Izatt, R. M., & Christensen, J. J. (1981). In R. M. Izatt and J. J. Christensen (Eds.), Progress in macrocyclic chemistry (Vol. 2, pp. 41–90). Jhon Wiley & Sons.
  • Liittringhaus, A. (1937). Hydroquinone or 1.5 and 1.6 dihydroxynaphtalemen cyclic polyethers. Justus Liebigs Annalen Der Chemie, 528, 181–210. https://doi.org/10.1002/jlac.19375280112
  • Luo, Y., Ouyang, G., Tang, Y., Y-M, H., & Q-H, F. (2020). Diaza-crown ether-bridged chiral diphosphoramidite ligands: Synthesis and applications in asymmetric catalysis. The Journal of Organic Chemistry, 85(12), 8176–8184. https://doi.org/10.1021/acs.joc.0c00223
  • Lipinski, C. A. (2016). Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Advanced Drug Delivery Reviews, 101, 34–41. https://doi.org/10.1016/j.addr.2016.04.029
  • Maier, L. (1990). Organic phosphorus compounds 91.1synthesis and properties of 1-amino-2-arylethylphosphonic and-phosphinic acids as well as -phosphine oxides. Phosphorus, Sulfur, and Silicon and the Related Elements, 53(1-4), 43–67. https://doi.org/10.1080/10426509008038012
  • Maier, L., & Diel, P. J. (1991). Organic phosphorus compounds 94 preparation, physical and biological properties of amino-arylmethylphosphonic- and-phosphonous acids. Phosphorus, Sulfur, and Silicon and the Related Elements, 57(1-2), 57–64. https://doi.org/10.1080/10426509108038831
  • Mcdowell, W. J. (1988). Crown ethers as solvent extraction reagents: Where do we stand? Separation Science and Technology, 23(12-13), 1251–1268. https://doi.org/10.1080/01496398808075628
  • Mekky, A. H., Hlhaes, H. G., El-Okr, M. M., Al-Aboudi, A. S., & Ibrahim, M. A. (2015). Effect of solvents on the electronic properties of fullerene base systems: Molecular modelling. Journal of Computational and Applied Mathematics, 4(1), 1–4. https://doi.org/10.4172/2168-9679.1000203
  • Merabet, M., Melais, N., Boukachabia, M., Fiaud, J. C., & Zouioueche-Aribi, L. (2007). Effet d‘un ether couronne sur le systeme catalytique dans la reaction d‘acylation du 1-acenaphtenol avec la lipase de candida cylindracea. Journal De la Société Algerienne De Chimie, 17(2), 185–194.
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexiblity. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mirzaei, M., Hossein, E., Bagherjeri, F. A., Mirzaei, M., & Farhadipour, A. (2018). Investigation of non-covalent and hydrogen bonding interactions on the formation of crystalline networks and supramolecular synthons of series of α-aminophosphonates: Cristallography and DFT studies. Journal of Molecular Structure, 1163, 316–326. https://doi.org/10.1016/j.molstruc.2018.03.014
  • Mucha, A., Kafarski, P., & Berlicki, Ł. (2011). Remarkable potential of the α-aminophosphonate/phosphinate structural motif in medicinal chemistry. Journal of Medicinal Chemistry, 54(17), 5955–5980. https://doi.org/10.1021/jm200587f
  • Nagayama, S., & Kobayashi, S. (2000). A novel chiral lead (II) catalyst for enantioselective aldol reactions in aqueous media. Journal of the American Chemical Society, 122(46), 11531–11532. https://doi.org/10.1021/ja001234l
  • Omichi, M., Yamashita, S., Okura, Y., Ikutomo, R., Ueki, Y., Seko, N., & Kakuchi, R. (2019). Surface engineering of fluoropolymer films via the attachment of crown ether derivatives based on the combination of radiation-induced graft polymerization and the Kabachnik–Fields reaction. Polymers, 11(8), 1337. https://doi.org/10.3390/polym11081337
  • Olasupo, S. B., Uzairu, A., Shallangwa, G. A., & Uba, S. (2020). Profiling the antidepressant properties of phenyl piperidine derivatives as inhibitors of serotonin transporter (SERT) via cheminformatics modeling, molecular docking and ADMET predictions. Scientific African, 9, e00517. https://doi.org/10.1016/j.sciaf.2020.e00517
  • Oleg, T., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31, 254–261. https://doi.org/10.1002/jcc.21334
  • Pan, W., Ansiaux, C., & Vincent, S. P. (2007). Synthesis of acyclic galactitol-and lyxitol-aminophosphonates as inhibitors of UDP-galactopyranose mutase. Tetrahedron Letters, 48(25), 4353–4356. https://doi.org/10.1016/j.tetlet.2007.04.113
  • Patil, R., Das, S., Stanley, A., Yadav, L., Sudhakar, A., & Varma, A. K. (2010). Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PloS One, 5(8), e12029. https://doi.org/10.1371/journal.pone.0012029
  • Pedersen, C. J. (1967). Cyclic polyethers and their complexes with metal salts. Journal of the American Chemical Society, 89(10), 2495–2496. https://doi.org/10.1021/ja00986a052
  • Pedersen, C. J. (1970). Crystalline Salt Complexes of Macrocyclic Polyethers. Journal of the American Chemical Society, 92, 386–391. https://doi.org/10.1021/ja00705a605
  • Pham, T. S., Czirok, J. B., Balazs, L., Pal, K., Kubinyi, M., Bitter, I., & Jaszay, Z. (2011). BINOL-based azacrown ether catalyzed enantioselective Michael addition: Asymmetric synthesis of α-aminophosphonates. Tetrahedron: Asymmetry. 22(4), 480–486. https://doi.org/10.1016/j.tetasy.2011.02.002
  • Rostamnia, S., & Doustkhah, E. (2015). Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik–Fields multicomponent reaction. Journal of Magnetism and Magnetic Materials, 386, 111–116. https://doi.org/10.1016/j.jmmm.2015.03.064
  • Rostamnia, S., & Amini, M. (2014). Ultrasonic and Lewis acid ionic liquid catalytic system for Kabachnik–Fields reaction. Chemical Papers, 68(6), 834–837. https://doi.org/10.2478/s11696-013-0516-4
  • Raafat, M., Mohamed, I. A., & Faten, M. K. A. (2008). Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils. Applied Surface Science, 255, 2433–2441. https://doi.org/10.1016/j.apsusc.2008.07.155
  • Schug, K. A., & Lindner, W. (2005). Noncovalent binding between guanidinium and anionic groups: Focus on biological- and synthetic-based arginine/guanidinium interactions with phosph[on]ate and sulf[on]ate residues. Chemical Reviews, 105(1), 67–114. https://doi.org/10.1021/cr040603j
  • Satish, U. D., Kiran, R., Kharat, A. R., Yadav, S. U. S., Manoj, G. D., Jaiprakash, N. S., & Rajendra, P. P. (2018). Synthesis of novel α-aminophosphonate derivatives, biological evaluation as potent antiproliferative agents and molecular docking. ChemistrySelect, 3(20), 5552–5558. https://doi.org/10.1002/slct.201800798
  • Sivala, M. R., Devineni, S. R., Golla, M., Medarametla, V., Pothuru, G. K., & Chamarthi, N. R. (2016). A heterogeneous catalyst, SiO2-ZnBr2: An efficient neat access for α-aminophosphonates and antimicrobial activity evaluation. Journal of Chemical Sciences, 128(8), 1303–1313. https://doi.org/10.1007/s12039-016-1113-1
  • Turcheniuk, K. V., Kukhar, V. P., Roschenthaler, G. V., Acena, J. L., Soloshonok, V. A., & Sorochinsky, A. E. (2013). Recent advances in the synthesis of fluorinated aminophosphonates and aminophosphonic acids. RSC Advances, 3(19), 6693–6716. https://doi.org/10.1039/c3ra22891f
  • Uparkar, J. J., Dhavan, P. P., Jadhav, B. L., & Pawar, S. D. (2022). Design, synthesis and biological evaluation of furan based α-aminophosphonate derivatives as anti-Alzheimer agent. Journal of the Iranian Chemical Society, 19(7), 3103–3116. https://doi.org/10.1007/s13738-022-02515-w
  • Vahda, S. M., Baharfar, R., Tajbakhsh, M., Heydari, A., Baghbanian, S. M., & Khaksar, S. (2008). Organocatalytic synthesis of α-hydroxy and α-aminophosphonates. Tetrahedron Letters, 49(46), 6501–6504. https://doi.org/10.1016/j.tetlet.2008.08.094
  • Wei, H., Ruthenburg, A. J., Bechis, S. K., & Verdine, G. L. (2005). Nucleotide-dependent domain movement in the ATPase domain of a human type IIA DNA topoisomerase. The Journal of Biological Chemistry, 280(44), 37041–37047. https://doi.org/10.1074/jbc.M506520200
  • Williams, J. A., Hyland, R., Jones, B. C., Smith, D. A., Hurst, S., Goosen, T. C., Peterkin, V., Koup, J. R., & Ball, S. E. (2004). Drug-drug interactions for UDP-glucuronosyltransferase substrates: A pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 32(11), 1201–1208. https://doi.org/10.1124/dmd.104.000794
  • Xavier, S., & Periandy, S. (2015). Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 149, 216–230. https://doi.org/10.1016/j.saa.2015.04.055
  • Yadav, J. S., Reddy, B. V. S., Raj, K. S., Reddy, K. B., & Prasad, A. R. (2001). Zr4+catalyzed efficient synthesis of α-aminophosphonates. Synthesis, 2001(15), 2277–2280. https://doi.org/10.1055/s-2001-18444
  • Yanai, T., Tew, D., & Handy, N. (2004). New hybrid exchange-correlation functional using the Coulomb attenuating method (CAM-B3LYP). Chemical Physics Letters, 393(1-3), 51–57. https://doi.org/10.1002/chir.22384

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.