202
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigation of the mechanism of action of chemical constituents of celery seed against gout disease using network pharmacology, molecular docking, and molecular dynamics simulations

, , & ORCID Icon
Pages 2834-2845 | Received 26 Dec 2022, Accepted 20 Apr 2023, Published online: 19 May 2023

References

  • Chandran, U., Mehendale, N., Patil, S., Chaguturu, R., & Patwardhan, B. (2017). Network Pharmacology. Innovative Approaches in Drug Discovery, 127. Academic Press. https://doi.org/10.1016/B978-0-12-801814-9.00005-2
  • Chen, M., Lu, X., Lu, C., Shen, N., Jiang, Y., Chen, M., & Wu, H. (2018). Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Research & Therapy, 20(1), 20. https://doi.org/10.1186/s13075-018-1512-4
  • Chi, X., Zhang, H., Zhang, S., & Ma, K. (2020). Chinese herbal medicine for gout: A review of the clinical evidence and pharmacological mechanisms. Chinese Medicine, 15(1), 1–13. https://doi.org/10.1186/s13020-020-0297-y
  • Consortium, U. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47, D506–D515.
  • Cronstein, B. N., & Terkeltaub, R. (2006). The inflammatory process of gout and its treatment. Arthritis Research and Therapy, 8, 1–7. https://doi.org/10.1186/ar1908
  • Dalbeth, N., & Haskard, D. O. (2005). Mechanisms of inflammation in gout. Rheumatology (Oxford, England), 44(9), 1090–1096. https://doi.org/10.1093/rheumatology/keh640
  • Dehlin, M., Jacobsson, L., & Roddy, E. (2020). Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nature Reviews. Rheumatology, 16(7), 380–390. https://doi.org/10.1038/s41584-020-0441-1
  • Dolati, K., Rakhshandeh, H., Golestani, M., Forouzanfar, F., Sadeghnia, R., & Sadeghnia, H. R. (2018). Inhibitory effects of Apium graveolens on xanthine oxidase activity and serum uric acid levels in hyperuricemic mice. Preventive Nutrition and Food Science, 23(2), 127–133. https://doi.org/10.3746/pnf.2018.23.2.127
  • Feher, M. D., Hepburn, A. L., Hogarth, M. B., Ball, S. G., & Kaye, S. A. (2003). Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology (Oxford, England), 42(2), 321–325. https://doi.org/10.1093/rheumatology/keg103
  • Fruman, D. A., Chiu, H., Hopkins, B. D., Bagrodia, S., Cantley, L. C., & Abraham, R. T. (2017). The PI3K pathway in human disease. Cell, 170(4), 605–635. https://doi.org/10.1016/j.cell.2017.07.029
  • Gfeller, D., Michielin, O., & Zoete, V. (2013). Shaping the interaction landscape of bioactive molecules. Bioinformatics (Oxford, England), 29(23), 3073–3079. https://doi.org/10.1093/bioinformatics/btt540
  • Gupta, J., Gupta, R., & Mathur, K. (2019). Pharmacognostical, pharmacological and traditional perspectives of Apium graveolens: An ethnomedicinal plant. International Journal of Life Science and Pharma Research, 9, 38–47. https://doi.org/10.22376/ijpbs/lpr.2019.9.3.P38-47
  • Hamosh, A., Scott, A. F., Amberger, J., Valle, D., & McKusick, V. A. (2000). Online Mendelian inheritance in man (OMIM). Human Mutation, 15(1), 57–61. https://doi.org/10.1002/(SICI)1098-1004(200001)15:1<57::AID-HUMU12>3.0.CO;2-G
  • Held, S., Schieberle, P., & Somoza, V. (2007). Characterization of α-terpineol as an anti-inflammatory component of orange juice by in vitro studies using oral buccal cells. Journal of Agricultural and Food Chemistry, 55(20), 8040–8046. https://doi.org/10.1021/jf071691m
  • Huang, S., & Zou, X. (2006). An iterative knowledge‐based scoring function to predict protein–ligand interactions: I. Derivation of interaction potentials. Journal of Computational Chemistry, 27(15), 1866–1875. https://doi.org/10.1002/jcc.20504
  • Hussain, M. T., Ahmed, G., Jahan, N., & Adiba, M. (2013). Unani description of Tukhme Karafs (seeds of Apium graveolens Linn) and its scientific reports. International Research Journal of Biological Sciences, 2, 88–93.
  • Khan, S. A., & Lee, T. K. W. (2022). Network pharmacology and molecular docking-based investigations of Kochiae Fructus’s active phytomolecules, molecular targets, and pathways in treating COVID-19. Frontiers in Microbiology, 13, 3020. https://doi.org/10.3389/fmicb.2022.972576
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/acs.jctc.5b00935
  • Li, S., Li, L., Yan, H., Jiang, X., Hu, W., Han, N., & Wang, D. (2019). Anti‑gouty arthritis and anti‑hyperuricemia properties of celery seed extracts in rodent models. Molecular Medicine Reports. 20, 4623–4633. https://doi.org/10.3892/mmr.2019.10708
  • Lin, L.-Z., Lu, S., & Harnly, J. M. (2007). Detection and quantification of glycosylated flavonoid malonates in celery, Chinese celery, and celery seed by LC-DAD-ESI/MS. Journal of Agricultural and Food Chemistry, 55(4), 1321–1326. https://doi.org/10.1021/jf0624796
  • Long, S., Ji, S., Xue, P., Xie, H., Ma, Y., & Zhu, S. (2022). Network pharmacology and molecular docking on the molecular mechanism of Shiliao decoction in the treatment of cancer malnutrition. Frontiers in Nutrition, 9, 1971. https://doi.org/10.3389/fnut.2022.985991
  • Oh, K. K., Adnan, M., & Cho, D. H. (2021). Network pharmacology study on Morus alba L. leaves: Pivotal functions of bioactives on RAS signaling pathway and its associated target proteins against Gout. International Journal of Molecular Sciences, 22(17), 9372. https://doi.org/10.3390/ijms22179372
  • Pereira-Maróstica, H. V., Castro, L. S., Gonçalves, G. A., Silva, F. M. S., Bracht, L., Bersani-Amado, C. A., Peralta, R. M., Comar, J. F., Bracht, A., & Sá-Nakanishi, A. B. (2019). Methyl jasmonate reduces inflammation and oxidative stress in the brain of arthritic rats. Antioxidants, 8(10), 485. https://doi.org/10.3390/antiox8100485
  • Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Hénin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A., Luthey-Schulten, Z., … Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics, 153(4), 044130. https://doi.org/10.1063/5.0014475
  • Powanda, M. C., Whitehouse, M. W., & Rainsford, K. D. (2015). Celery seed and related extracts with antiarthritic, antiulcer, and antimicrobial activities. Progress in Drug Research, 70, 133–153.
  • Qiao, M., Yang, J., Zhao, Y., Zhu, Y., Wang, X., Wang, X., & Hu, J. (2020). Antiliver fibrosis screening of active ingredients from Apium graveolens L. seeds via GC-TOF-MS and UHPLC-MS/MS, Evidence-Based Complement. Evidence-Based Complementary and Alternative Medicine : eCAM, 2020, 8321732. https://doi.org/10.1155/2020/8321732
  • Sá-Nakanishi, A. B., Soni-Neto, J., Moreira, L. S., Gonçalves, G. A., Silva, F., Bracht, L., Bersani-Amado, C. A., Peralta, R. M., Bracht, A., & Comar, J. F. (2018). Anti-inflammatory and antioxidant actions of methyl jasmonate are associated with metabolic modifications in the liver of arthritic rats. Oxidative Medicine and Cellular Longevity, 2018, 2056250. https://doi.org/10.1155/2018/2056250
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shao, L. I., & Zhang, B. (2013). Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chinese Journal of Natural Medicines, 11(2), 110–120. https://doi.org/10.1016/S1875-5364(13)60037-0
  • Soliman, M. M., Nassan, M. A., Aldhahrani, A., Althobaiti, F., & Mohamed, W. A. (2020). Molecular and histopathological study on the ameliorative impacts of Petroselinum crispum and Apium graveolens against experimental hyperuricemia. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-66205-4
  • Stelzer, G., Dalah, I., Stein, T. I., Satanower, Y., Rosen, N., Nativ, N., Oz-Levi, D., Olender, T., Belinky, F., Bahir, I., Krug, H., Perco, P., Mayer, B., Kolker, E., Safran, M., & Lancet, D. (2011). In-silico human genomics with GeneCards. Human Genomics, 5(6), 709–717. https://doi.org/10.1186/1479-7364-5-6-709
  • The UniProt Consortium. (2023). UniProt: The Universal Protein knowledgebase in 2023. Nucleic Acids Research, 51, D523–D531.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Wang, J. W., Vu, C., & Poloso, N. J. (2017). A prostacyclin analog, cicaprost, exhibits potent anti-inflammatory activity in human primary immune cells and a uveitis model. Journal of Ocular Pharmacology and Therapeutics : The Official Journal of the Association for Ocular Pharmacology and Therapeutics, 33(3), 186–192. https://doi.org/10.1089/jop.2016.0167
  • World Health Organization. (2019). International Statistical Classification of Diseases and Related Health Problems (11th ed.; ICD-11), https://icd.who.int/browse11/l-m/en#/http%3A//id.who.int/icd/entity/395622227.
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Zhang, B., Wang, X., & Li, S. (2013). An integrative platform of TCM network pharmacology and its application on a herbal formula, Qing-Luo-Yin, Evidence-Based Complement. Evidence-Based Complementary and Alternative Medicine : eCAM, 2013, 456747. https://doi.org/10.1155/2013/456747

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.