166
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Investigation on the mechanisms by which the herbal remedies induce anti-prostate cancer activity: uncovering the most practical natural compound

ORCID Icon, , , ORCID Icon &
Pages 3349-3362 | Received 21 Dec 2022, Accepted 04 May 2023, Published online: 17 May 2023

References

  • Adnan, M. (2021). Physcion and physcion 8-O-β-D-glucopyranoside: Natural anthraquinones with potential anticancer activities. Current Drug Targets, 22(5), 488–504. https://doi.org/10.2174/18735592MTEwDNjQiz
  • Agarwal, C., Veluri, R., Kaur, M., Chou, S. C., Thompson, J. A., & Agarwal, R. (2007). Fractionation of high molecular weight tannins in grape seed extract and identification of procyanidin B2-3,3′-di-O-gallate as a major active constituent causing growth inhibition and apoptotic death of DU145 human prostate carcinoma cells. Carcinogenesis, 28(7), 1478–1484. https://doi.org/10.1093/carcin/bgm045
  • Albogami, S., & Hassan, A. M. (2021). Assessment of the efficacy of olive leaf (Olea europaea L.) extracts in the treatment of colorectal cancer and prostate cancer using in vitro cell models. Molecules, 26(13), 4069. https://doi.org/10.3390/molecules26134069
  • Antonacci, D. B. M. (2014). Anticancer effects of grape seed extract on human cancers: A review. Journal of Carcinogenesis & Mutagenesis, s8(01), 1–14. https://doi.org/10.4172/2157-2518.S8-005
  • Asadikaram, G., Poustforoosh, A., Pardakhty, A., Torkzadeh-Mahani, M., & Nematollahi, M. H. (2021). Niosomal virosome derived by vesicular stomatitis virus glycoprotein as a new gene carrier. Biochemical and Biophysical Research Communications, 534, 980–987. https://doi.org/10.1016/j.bbrc.2020.10.054
  • Asadi-Samani, M., Rafieian-Kopaei, M., Lorigooini, Z., & Shirzad, H. (2018). A screening of growth inhibitory activity of Iranian medicinal plants on prostate cancer cell lines. BioMedicine, 8(2), 8. https://doi.org/10.1051/bmdcn/2018080208
  • Bin Sayeed, M. S., & Ameen, S. S. (2015). Beta-sitosterol: A promising but orphan nutraceutical to fight against cancer. Nutrition and Cancer, 67(8), 1216–1222. https://doi.org/10.1080/01635581.2015.1087042
  • Bowen, C., Ostrowski, M. C., Leone, G., & Gelmann, E. P. (2019). Loss of PTEN accelerates NKx3.1 degradation to promote prostate cancer progression. Cancer Research, 79(16), 4124–4134. https://doi.org/10.1158/0008-5472.CAN-18-4110
  • Ceci, C., Lacal, P. M., Tentori, L., De Martino, M. G., Miano, R., & Graziani, G. (2018). Experimental evidence of the antitumor, antimetastatic and antiangiogenic activity of ellagic acid. Nutrients, 10(11), 1756. https://doi.org/10.3390/nu10111756
  • Chen, H.-M., Wu, Y.-C., Chia, Y.-C., Chang, F.-R., Hsu, H.-K., Hsieh, Y.-C., Chen, C.-C., & Yuan, S.-S. (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer Letters, 286(2), 161–171. https://doi.org/10.1016/j.canlet.2009.05.040
  • Chen, L. H., Fang, J., Li, H., Demark-Wahnefried, W., & Lin, X. (2007). Enterolactone induces apoptosis in human prostate carcinoma LNCaP cells via a mitochondrial-mediated, caspase-dependent pathway. Molecular Cancer Therapeutics, 6(9), 2581–2590. https://doi.org/10.1158/1535-7163.MCT-07-0220
  • Chen, P., Guo, Z., Chen, F., Wu, Y., & Zhou, B. (2022). Recent advances and perspectives on the health benefits of Urolithin B, a bioactive natural product derived from ellagitannins. Frontiers in Pharmacology, 13, 917266. https://doi.org/10.3389/fphar.2022.917266
  • Chen, Y., Guo, Y., Ge, X., Itoh, H., Watanabe, A., Fujiwara, T., Kodama, T., & Aburatani, H. (2006). Elevated expression and potential roles of human Sp5, a member of Sp transcription factor family, in human cancers. Biochemical and Biophysical Research Communications, 340(3), 758–766. https://doi.org/10.1016/j.bbrc.2005.12.068
  • Das, S., Dixon, J. E., & Cho, W. (2003). Membrane-binding and activation mechanism of PTEN. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7491–7496. https://doi.org/10.1073/pnas.0932835100
  • de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K. N., Jones, R. J., Goodman, O. B., Saad, F., Staffurth, J. N., Mainwaring, P., Harland, S., Flaig, T. W., Hutson, T. E., Cheng, T., Patterson, H., Hainsworth, J. D., Ryan, C. J., … Scher, H. I.; COU-AA-301 Investigators. (2011). Abiraterone and increased survival in metastatic prostate cancer. The New England Journal of Medicine, 364(21), 1995–2005. https://doi.org/10.1056/nejmoa1014618
  • Delpachitra, S., Campbell, A., & Wibowo, E. (2020). Preference for sleep management strategies among prostate cancer patients: An Aotearoa/New Zealand perspective. Cancer Treatment and Research Communications, 25, 100219. https://doi.org/10.1016/j.ctarc.2020.100219
  • Desmond Molecular Dynamics System, D. E. Shaw Research, New York, NY, 2020. Maestro-Desmond Interoperability Tools, Schrödinger, New York, NY, 2020. (n.d.).
  • Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., & Cao, D.-S. (2018). Admetlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. Journal of Cheminformatics, 10(1). https://doi.org/10.1186/s13321-018-0283-x
  • Ebrahimi, N., Amirmahani, F., Sadeghi, B., & Ghanaatian, M. (2021). Trichoderma longibrachiatum derived metabolite as a potential source of anti‐breast‐cancer agent. Biologia, 76(5), 1595–1601. https://doi.org/10.1007/s11756-021-00705-0
  • Engelbrecht, A.-M., Mattheyse, M., Ellis, B., Loos, B., Thomas, M., Smith, R., Peters, S., Smith, C., & Myburgh, K. (2007). Proanthocyanidin from grape seeds inactivates the PI3-kinase/PKB pathway and induces apoptosis in a colon cancer cell line. Cancer Letters, 258(1), 144–153. https://doi.org/10.1016/j.canlet.2007.08.020
  • Fort, R. S., Trinidad Barnech, J. M., Dourron, J., Colazzo, M., Aguirre-Crespo, F. J., Duhagon, M. A., & Álvarez, G. (2018). Isolation and structural characterization of bioactive molecules on prostate cancer from mayan traditional medicinal plants. Pharmaceuticals, 11(3), 78. https://doi.org/10.3390/ph11030078
  • Galatage, S. T., Trivedi, R., & Bhagwat, D. A. (2021). Characterization of camptothecin by analytical methods and determination of anticancer potential against prostate cancer. Future Journal of Pharmaceutical Sciences, 7(1). https://doi.org/10.1186/s43094-021-00236-0
  • Ganai, S. A. (2016). Histone deacetylase inhibitor sulforaphane: The phytochemical with vibrant activity against prostate cancer. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 81, 250–257. https://doi.org/10.1016/j.biopha.2016.04.022
  • Georgescu, M. M. (2010). PTEN tumor suppressor network in PI3K-Akt pathway control. Genes and Cancer, 1(12), 1170–1177. https://doi.org/10.1177/1947601911407325
  • Gezegen, H., Gürdere, M. B., Dinçer, A., Özbek, O., Koçyiğit, Ü. M., Taslimi, P., Tüzün, B., Budak, Y., & Ceylan, M. (2021). Synthesis, molecular docking, and biological activities of new cyanopyridine derivatives containing phenylurea. Archiv Der Pharmazie, 354(4), 2000334. https://doi.org/10.1002/ardp.202000334
  • Hadizadeh, F., Ghodsi, R., Mirzaei, S., & Sahebkar, A. (2022). In silico exploration of novel tubulin inhibitors: A combination of docking and molecular dynamics simulations, pharmacophore modeling, and virtual screening. Computational and Mathematical Methods in Medicine, 2022, 4004068. https://doi.org/10.1155/2022/4004068
  • Hashim, D., Gonzalez-Feliciano, A. G., Ahearn, T. U., Pettersson, A., Barber, L., Pernar, C. H., Ebot, E. M., Isikbay, M., Finn, S. P., Giovannucci, E. L., Lis, R. T., Loda, M., Parmigiani, G., Lotan, T., Kantoff, P. W., Mucci, L. A., & Graff, R. E. (2020). Family history of prostate cancer and the incidence of ERG- and phosphatase and tensin homolog-defined prostate cancer. International Journal of Cancer, 146(10), 2694–2702. https://doi.org/10.1002/ijc.32577
  • Hodaei, M., Rahimmalek, M., & Behbahani, M. (2021). Anticancer drug discovery from Iranian Chrysanthemum cultivars through system pharmacology exploration and experimental validation. Scientific Reports, 11(1), 1–11. https://doi.org/10.1038/s41598-021-91010-y
  • Jafari-Arvari, H., Saei-Dehkordi, S. S., & Farhadian, S. (2021). Evaluation of interactions between food colorant, tartrazine, and Apo-transferrin using spectroscopic analysis and docking simulation. Journal of Molecular Liquids, 339, 116715. https://doi.org/10.1016/j.molliq.2021.116715
  • Jorgensen, W. L., & Duffy, E. M. (2002). Prediction of drug solubility from structure. Advanced Drug Delivery Reviews, 54(3), 355–366. https://doi.org/10.1016/S0169-409X(02)00008-X
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kanwal, N., Rasul, A., Hussain, G., Anwar, H., Shah, M. A., Sarfraz, I., Riaz, A., Batool, R., Shahbaz, M., Hussain, A., & Selamoglu, Z. (2020). Oleandrin: A bioactive phytochemical and potential cancer killer via multiple cellular signaling pathways. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 143, 111570. https://doi.org/10.1016/j.fct.2020.111570
  • Kappen, S., de Bock, G. H., Sirri, E., Vohmann, C., Kieschke, J., & Winter, A. (2021). Differences in prostate cancer incidence and mortality in Lower Saxony (Germany) and Groningen province (Netherlands): Potential impact of prostate-specific antigen testing. Frontiers in Oncology, 11, 681006. https://doi.org/10.3389/fonc.2021.681006
  • Kassi, E., Papoutsi, Z., Pratsinis, H., Aligiannis, N., Manoussakis, M., & Moutsatsou, P. (2007). Ursolic acid, a naturally occurring triterpenoid, demonstrates anticancer activity on human prostate cancer cells. Journal of Cancer Research and Clinical Oncology, 133(7), 493–500. https://doi.org/10.1007/s00432-007-0193-1
  • Keyes, M., Crook, J., Frcpc, M. D., Morton, G., Vigneault, E., Usmani, N., & Morris, F. W. J. (2013). Treatment options for localized prostate cancer. Canadian Family Physician, 59(12), 1269. https://doi.org/10.1007/s00761-019-0540-2
  • Kim, S. Y., Ryu, J. S., Li, H., Park, W. J., Yun, H. Y., Baek, K. J., … Kim, D. S. (2010). UVB-activated indole-3-acetic acid induces apoptosis of PC-3 prostate cancer cells. Anticancer Research, 30(11), 4607–4612.
  • Kim, S.-M., Oh, E. Y., Lee, J. H., Nam, D., Lee, S. G., Lee, J., Kim, S.-H., Shim, B. S., & Ahn, K. S. (2015). Brassinin combined with capsaicin enhances apoptotic and anti-metastatic effects in PC-3 human prostate cancer cells. Phytotherapy Research: PTR, 29(11), 1828–1836. https://doi.org/10.1002/ptr.5478
  • Kolodziejczyk-Czepas, J. (2012). Trifolium species-derived substances and extracts - Biological activity and prospects for medicinal applications. Journal of Ethnopharmacology, 143(1), 14–23. https://doi.org/10.1016/j.jep.2012.06.048
  • Komura, K., Sweeney, C. J., Inamoto, T., Ibuki, N., Azuma, H., & Kantoff, P. W. (2018). Current treatment strategies for advanced prostate cancer. International Journal of Urology, 25(3), 220–231. https://doi.org/10.1111/iju.13512
  • Krishna, S., Bustamante, L., Haynes, R. K., & Staines, H. M. (2008). Artemisinins: Their growing importance in medicine. Trends in Pharmacological Sciences, 29(10), 520–527. https://doi.org/10.1016/j.tips.2008.07.004
  • Kumar, R., Deep, G., Wempe, M. F., Surek, J., Kumar, A., Agarwal, R., & Agarwal, C. (2018). Procyanidin B2 3,3″-di-O-gallate induces oxidative stress-mediated cell death in prostate cancer cells via inhibiting MAP kinase phosphatase activity and activating ERK1/2 and AMPK. Molecular Carcinogenesis, 57(1), 57–69. https://doi.org/10.1002/mc.22731
  • Lee, J. O., Yang, H., Georgescu, M. M., Di Cristofano, A., Maehama, T., Shi, Y., Dixon, J. E., Pandolfi, P., & Pavletich, N. P. (1999). Crystal structure of the PTEN tumor suppressor: Implications for its phosphoinositide phosphatase activity and membrane association. Cell, 99(3), 323–334. https://doi.org/10.1016/S0092-8674(00)81663-3
  • Lee, S. T., Wong, P. F., Hooper, J. D., & Mustafa, M. R. (2013). Alpha-tomatine synergises with paclitaxel to enhance apoptosis of androgen-independent human prostate cancer PC-3 cells in vitro and in vivo. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 20(14), 1297–1305. https://doi.org/10.1016/j.phymed.2013.07.002
  • Lei, Q., Jiao, J., Xin, L., Chang, C.-J., Wang, S., Gao, J., Gleave, M. E., Witte, O. N., Liu, X., & Wu, H. (2006). NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell, 9(5), 367–378. https://doi.org/10.1016/j.ccr.2006.03.031
  • Leslie, N. R., & Downes, C. P. (2004). PTEN function: How normal cells control it and tumour cells lose it. Biochemical Journal, 382(1), 1–11. https://doi.org/10.1042/BJ20040825
  • Li, J., Chong, T., Wang, Z., Chen, H., Li, H., Cao, J., Zhang, P., & Li, H. (2014). A novel anti-cancer effect of resveratrol: Reversal of epithelial- mesenchymal transition in prostate cancer cells. Molecular Medicine Reports, 10(4), 1717–1724. https://doi.org/10.3892/mmr.2014.2417
  • Lin, H.-P., Lin, C.-Y., Liu, C.-C., Su, L.-C., Huo, C., Kuo, Y.-Y., Tseng, J.-C., Hsu, J.-M., Chen, C.-K., & Chuu, C.-P. (2013). Caffeic acid phenethyl ester as a potential treatment for advanced prostate cancer targeting Akt signaling. International Journal of Molecular Sciences, 14(3), 5264–5283. https://doi.org/10.3390/ijms14035264
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today: Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, W. K., Xu, S. X., & Che, C. T. (2000). Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sciences, 67(11), 1297–1306. https://doi.org/10.1016/S0024-3205(00)00720-7
  • Livingstone, T. L., Beasy, G., Mills, R. D., Plumb, J., Needs, P. W., Mithen, R., & Traka, M. H. (2019). Plant bioactives and the prevention of prostate cancer: Evidence from human studies. Nutrients, 11(9), 2245. https://doi.org/10.3390/nu11092245
  • Mali, A. V., Padhye, S. B., Anant, S., Hegde, M. V., & Kadam, S. S. (2019). Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. European Journal of Pharmacology, 852, 107–124. https://doi.org/10.1016/j.ejphar.2019.02.022
  • Mansouri, K., Rasoulpoor, S., Daneshkhah, A., Abolfathi, S., Salari, N., Mohammadi, M., Rasoulpoor, S., & Shabani, S. (2020). Clinical effects of curcumin in enhancing cancer therapy: A systematic review. BMC Cancer, 20(1). https://doi.org/10.1186/s12885-020-07256-8
  • Mbese, Z., Khwaza, V., & Aderibigbe, B. A. (2019). Curcumin and its derivatives as potential therapeutic agents in prostate, colon and breast cancers. Molecules, 24(23), 4386. https://doi.org/10.3390/molecules24234386
  • Mehrabani, M., Goudarzi, M., Mehrzadi, S., Siahpoosh, A., Mohammadi, M., Khalili, H., & Malayeri, A. (2020). Crocin: A protective natural antioxidant against pulmonary fibrosis induced by bleomycin. Pharmacological Reports: PR, 72(4), 992–1001. https://doi.org/10.1007/s43440-019-00023-y
  • Mehrabani, M., Raeiszadeh, M., Najafipour, H., Tarzi, M. E., Amirkhosravi, A., Poustforoosh, A., … Mehrabani, M. (2020). Evaluation of the cytotoxicity, antibacterial, antioxidant, and anti-inflammatory effects of different extracts of Punica granatum var. pleniflora. Journal of Kerman University of Medical Sciences, 27(5), 414–425. https://doi.org/10.22062/JKMU.2020.91474
  • Mehrzadi, S., Hosseini, P., Mehrabani, M., Siahpoosh, A., Goudarzi, M., Khalili, H., & Malayeri, A. (2021). Attenuation of bleomycin-induced pulmonary fibrosis in Wistar rats by combination treatment of two natural phenolic compounds: Quercetin and Gallic acid. Nutrition and Cancer, 73(10), 2039–2049. https://doi.org/10.1080/01635581.2020.1820053
  • Mehrzadi, S., Mehrabani, M., Malayeri, A. R., Bakhshayesh, M., Kalantari, H., & Goudarzi, M. (2019). Ellagic acid as a potential antioxidant, alleviates methotrexate-induced hepatotoxicity in male rats. Acta Chirurgica Belgica, 119(2), 69–77. https://doi.org/10.1080/00015458.2018.1455419
  • Mohammadinejad, A., Mohajeri, T., Aleyaghoob, G., Heidarian, F., & Kazemi Oskuee, R. (2022). Ellagic acid as a potent anticancer drug: A comprehensive review on in vitro, in vivo, in silico, and drug delivery studies. Biotechnology and Applied Biochemistry, 69(6), 2323–2356. https://doi.org/10.1002/bab.2288
  • Molinari, F., & Frattini, M. (2013). Functions and regulation of the PTEN gene in colorectal cancer. Frontiers in Oncology, 3, 326. https://doi.org/10.3389/fonc.2013.00326
  • Morgenbesser, S. D., McLaren, R. P., Richards, B., Zhang, M., Akmaev, V. R., Winter, S. F., Mineva, N. D., Kaplan-Lefko, P. J., Foster, B. A., Cook, B. P., Dufault, M. R., Cao, X., Wang, C. J., Teicher, B. A., Klinger, K. W., Greenberg, N. M., & Madden, S. L. (2007). Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered house prostate cancer model. The Prostate, 67(1), 83–106. https://doi.org/10.1002/pros.20505
  • Mottaghipisheh, J., Doustimotlagh, A. H., Irajie, C., Tanideh, N., Barzegar, A., & Iraji, A. (2022). The promising therapeutic and preventive properties of anthocyanidins/anthocyanins on prostate cancer. Cells, 11(7), 1070. https://doi.org/10.3390/cells11071070
  • Muthumanickam, S., Indhumathi, T., Boomi, P., Balajee, R., Jeyakanthan, J., Anand, K., Ravikumar, S., Kumar, P., Sudha, A., & Jiang, Z. (2022). In silico approach of naringin as potent phosphatase and tensin homolog (PTEN) protein agonist against prostate cancer. Journal of Biomolecular Structure & Dynamics, 40(4), 1629–1638. https://doi.org/10.1080/07391102.2020.1830855
  • Nader, R., El Amm, J., & Aragon-Ching, J. (2018). Role of chemotherapy in prostate cancer. Asian Journal of Andrology, 20(3), 221. https://doi.org/10.4103/aja.aja_40_17
  • Nawaz, J., Rasul, A., Shah, M. A., Hussain, G., Riaz, A., Sarfraz, I., Zafar, S., Adnan, M., Khan, A. H., & Selamoglu, Z. (2020). Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sciences, 250, 117591. https://doi.org/10.1016/j.lfs.2020.117591
  • Nevedomskaya, E., Baumgart, S. J., & Haendler, B. (2018). Recent advances in prostate cancer treatment and drug discovery. International Journal of Molecular Sciences, 19(5), 1359. https://doi.org/10.3390/ijms19051359
  • Panwar, U., & Singh, S. K. (2021). Atom-based 3D-QSAR, molecular docking, DFT, and simulation studies of acylhydrazone, hydrazine, and diazene derivatives as IN-LEDGF/p75 inhibitors. Structural Chemistry, 32(1), 337–352. https://doi.org/10.1007/s11224-020-01628-3
  • Poustforoosh, A., Faramarz, S., Negahdaripour, M., & Hashemiour, H. (2022). Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. Journal of Biomolecular Structure and Dynamics, 1, 1–15. https://doi.org/10.1080/07391102.2023.2196347
  • Poustforoosh, A., Faramarz, S., Negahdaripour, M., & Hashemipour, H. (2023). Modeling and affinity maturation of an anti‑CD20 nanobody : A comprehensive in‑silico investigation. Scientific Reports, 13(1), 11. https://doi.org/10.1038/s41598-023-27926-4
  • Poustforoosh, A., Faramarz, S., Nematollahi, M. H., Hashemipour, H., Negahdaripour, M., & Pardakhty, A. (2022). In silico SELEX screening and statistical analysis of newly designed 5mer peptide-aptamers as Bcl-xl inhibitors using the Taguchi method. Computers in Biology and Medicine, 146, 105632. https://doi.org/10.1016/J.COMPBIOMED.2022.105632
  • Poustforoosh, A., Faramarz, S., Nematollahi, M. H., Hashemipour, H., Tüzün, B., Pardakhty, A., & Mehrabani, M. (2022). 3D-QSAR, molecular docking, molecular dynamics, and ADME/T analysis of marketed and newly designed flavonoids as inhibitors of Bcl-2 family proteins for targeting U-87 glioblastoma. Journal of Cellular Biochemistry, 123(2), 390–405. https://doi.org/10.1002/jcb.30178
  • Poustforoosh, A., Farmarz, S., Nematollahi, M. H., Hashemipour, H., & Pardakhty, A. (2022). Construction of Bio-conjugated nano vesicles using non-ionic surfactants for targeted drug delivery : A computational supported experimental study. Journal of Molecular Liquids, 367, 120588. https://doi.org/10.1016/j.molliq.2022.120588
  • Poustforoosh, A., Hashemipour, H., Pardakhty, A., & Pour, M. K. (2022). Preparation of nano-micelles of meloxicam for transdermal drug delivery and simulation of drug release: A computational supported experimental study. The Canadian Journal of Chemical Engineering, 100(11), 3428–3436. https://doi.org/10.1002/cjce.24339
  • Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M., & Nematollahi, M. H. (2022). The impact of D614G mutation of SARS-COV-2 on the efficacy of anti-viral drugs: A comparative molecular docking and molecular dynamics study. Current Microbiology, 79(8), 241. https://doi.org/10.1007/s00284-022-02921-6
  • Poustforoosh, A., Hashemipour, H., Tüzün, B., Pardakhty, A., Mehrabani, M., & Nematollahi, M. H. (2021). Evaluation of potential anti-RNA-dependent RNA polymerase (RdRP) drugs against the newly emerged model of COVID-19 RdRP using computational methods. Biophysical Chemistry, 272, 106564. https://doi.org/10.1016/j.bpc.2021.106564
  • Poustforoosh, A., Nematollahi, M. H., Hashemipour, H., & Pardakhty, A. (2022). Recent advances in bio-conjugated nanocarriers for crossing the Blood-Brain Barrier in (pre-)clinical studies with an emphasis on vesicles. Journal of Controlled Release: Official Journal of the Controlled Release Society, 343, 777–797. https://doi.org/10.1016/j.jconrel.2022.02.015
  • Rodríguez-Escudero, I., Oliver, M. D., Andrés-Pons, A., Molina, M., Cid, V. J., & Pulido, R. (2011). A comprehensive functional analysis of PTEN mutations: Implications in tumor- and autism-related syndromes. Human Molecular Genetics, 20(21), 4132–4142. https://doi.org/10.1093/hmg/ddr337
  • Rosales-Hernández, M. C., & Correa-Basurto, J. (2015). The importance of employing computational resources for the automation of drug discovery. Expert Opinion on Drug Discovery, 10(3), 213–219. https://doi.org/10.1517/17460441.2015.1005071
  • Rosenthal, S. A., Hu, C., Sartor, O., Gomella, L. G., Amin, M. B., Purdy, J., Michalski, J. M., Garzotto, M. G., Pervez, N., Balogh, A. G., Rodrigues, G. B., Souhami, L., Reaume, M. N., Williams, S. G., Hannan, R., Horwitz, E. M., Raben, A., Peters, C. A., Feng, F. Y., Shipley, W. U., & Sandler, H. M. (2019). Effect of chemotherapy with docetaxel with androgen suppression and radiotherapy for localized high-risk prostate cancer: The randomized phase III NRG Oncology RTOG 0521 Trial. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 37(14), 1159–1168. https://doi.org/10.1200/JCO.18.02158
  • Sameri, S., Mohammadi, C., Mehrabani, M., & Najafi, R. (2021). Targeting the hallmarks of cancer: The effects of silibinin on proliferation, cell death, angiogenesis, and migration in colorectal cancer. BMC Complementary Medicine and Therapies, 21(1), 1–9. https://doi.org/10.1186/s12906-021-03330-1
  • Sargazi, M. L., Juybari, K. B., Tarzi, M. E., Amirkhosravi, A., Nematollahi, M. H., Mirzamohammdi, S., Mehrbani, M., Mehrabani, M., & Mehrabani, M. (2021). Naringenin attenuates cell viability and migration of C6 glioblastoma cell line: A possible role of hedgehog signaling pathway. Molecular Biology Reports, 48(9), 6413–6421. https://doi.org/10.1007/s11033-021-06641-1
  • Schrödinger Release 2020‐4: LigPrep, Schrödinger, LLC, New York, NY 2020. (n.d.).
  • Schrödinger Release 2020‐4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY 2016; Impact, Schrödinger, LLC, New York, NY 2016; Prime, Schrödinger, LLC, New York, NY 2020. (n.d.).
  • Simmons, S. O., & Horowitz, J. M. (2006). Nkx3.1 binds and negatively regulates the transcriptional activity of Sp-family members in prostate-derived cells. The Biochemical Journal, 393(Pt 1), 397–409. https://doi.org/10.1042/BJ20051030
  • Sirin, S., Pearlman, D. A., & Sherman, W. (2014). Physics-based enzyme design: Predicting binding affinity and catalytic activity. Proteins, 82(12), 3397–3409. https://doi.org/10.1002/prot.24694
  • Song, H.-J., Sneddon, A. A., Barker, P. A., Bestwick, C., Choe, S.-N., McClinton, S., Grant, I., Rotondo, D., Heys, S. D., & Wahle, K. W. J. (2004). Conjugated linoleic acid inhibits proliferation and modulates protein kinase C isoforms in human prostate cancer cells. Nutrition and Cancer, 49(1), 100–108. https://doi.org/10.1207/s15327914nc4901_14
  • Spiegler, V., Greiffer, L., Jacobtorweihen, J., Asase, A., Lanvers-Kaminsky, C., Hempel, G., Agyare, C., & Hensel, A. (2021). In vitro screening of plant extracts traditionally used as cancer remedies in Ghana – 15-Hydroxyangustilobine A as the active principle in Alstonia boonei leaves. Journal of Ethnopharmacology, 265, 113359. https://doi.org/10.1016/j.jep.2020.113359
  • Stanisławska, I. J., Piwowarski, J. P., Granica, S., & Kiss, A. K. (2018). The effects of urolithins on the response of prostate cancer cells to non-steroidal antiandrogen bicalutamide. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 46, 176–183. https://doi.org/10.1016/j.phymed.2018.03.054
  • Stuart, E. C., Scandlyn, M. J., & Rosengren, R. J. (2006). Role of epigallocatechin gallate (EGCG) in the treatment of breast and prostate cancer. Life Sciences, 79(25), 2329–2336. https://doi.org/10.1016/j.lfs.2006.07.036
  • Takahashi, M., Nakamura, Y., Obama, K., & Furukawa, Y. (2005). Identification of SP5 as a downstream gene of the β-catenin/Tcf pathway and its enhanced expression in human colon cancer. International Journal of Oncology, 27(6), 1483–1487. https://doi.org/10.3892/IJO.27.6.1483
  • Taslimi, P., Erden, Y., Mamedov, S., Zeynalova, L., Ladokhina, N., Tas, R., Tuzun, B., Sujayev, A., Sadeghian, N., Alwasel, S. H., & Gulcin, I. (2021). The biological activities, molecular docking studies, and anticancer effects of 1-arylsuphonylpyrazole derivatives. Journal of Biomolecular Structure & Dynamics, 39(9), 3336–3346. https://doi.org/10.1080/07391102.2020.1763838
  • Tyagi, A., Kumar, S., Raina, K., Wempe, M. F., Maroni, P. D., Agarwal, R., & Agarwal, C. (2019). Differential effect of grape seed extract and its active constituent procyanidin B2 3,3″-di-O-gallate against prostate cancer stem cells. Molecular Carcinogenesis, 58(7), 1105–1117. https://doi.org/10.1002/mc.22995
  • Tyagi, A., Raina, K., Shrestha, S. P., Miller, B., Thompson, J. A., Wempe, M. F., Agarwal, R., & Agarwal, C. (2014). Procyanidin B2 3,3″-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-κB, Stat3, and AP1 transcription factors. Nutrition and Cancer, 66(4), 736–746. https://doi.org/10.1080/01635581.2013.783602
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2022). AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Wang, C. Y., Bai, X. Y., & Wang, C. H. (2014). Traditional Chinese medicine: A treasured natural resource of anticancer drug research and development. The American Journal of Chinese Medicine, 42(3), 543–559. https://doi.org/10.1142/S0192415X14500359
  • Wang, C., Niimi, M., Watanabe, T., Wang, Y., Liang, J., & Fan, J. (2018). Treatment of atherosclerosis by traditional Chinese medicine: Questions and quandaries. Atherosclerosis, 277, 136–144. https://doi.org/10.1016/j.atherosclerosis.2018.08.039
  • Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488–515. https://doi.org/10.1017/S0033583515000190
  • Wei, M.-M., Zhao, S.-J., Dong, X.-M., Wang, Y.-J., Fang, C., Wu, P., Song, G.-Q., Gao, J.-N., Huang, Z.-H., Xie, T., & Zhou, J.-L. (2021). A combination index and glycoproteomics-based approach revealed synergistic anticancer effects of curcuminoids of turmeric against prostate cancer PC3 cells. Journal of Ethnopharmacology, 267, 113467. https://doi.org/10.1016/j.jep.2020.113467
  • Wei, W., Rasul, A., Sadiqa, A., Sarfraz, I., Hussain, G., Nageen, B., Liu, X., Watanabe, N., Selamoglu, Z., Ali, M., Li, X., & Li, J. (2019). Curcumol: From plant roots to cancer roots. International Journal of Biological Sciences, 15(8), 1600–1609. https://doi.org/10.7150/ijbs.34716
  • Wishart, D. S. (2007). Improving early drug discovery through ADME modelling: An overview. Drugs in R&D, 8(6), 349–362. https://doi.org/10.2165/00126839-200708060-00003
  • Xue, R., Fang, Z., Zhang, M., Yi, Z., Wen, C., & Shi, T. (2013). TCMID: Traditional Chinese medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Research, 41(Database issue), D1089–D1095. https://doi.org/10.1093/nar/gks1100
  • Yang, S., Zhang, J., Yan, Y., Yang, M., Li, C., Li, J., Zhong, L., Gong, Q., & Yu, H. (2019). Network pharmacology-based strategy to investigate the pharmacologic mechanisms of Atractylodes macrocephala Koidz. For the treatment of chronic gastritis. Frontiers in Pharmacology, 10, 1629. https://doi.org/10.3389/fphar.2019.01629
  • Yo, Y. Y., Shieh, G. S., Hsu, K. F., Chao-Liang, W., & Shiau, A. L. (2009). Licorice and licochalcone-a induce autophagy in LNCaP prostate cancer cells by suppression of Bcl-2 expression and the mTOR pathway. Journal of Agricultural and Food Chemistry, 57(18), 8266–8273. https://doi.org/10.1021/jf901054c
  • Zafar, S. (2021). Osthole: A multifunctional natural compound with potential anticancer, antioxidant and anti-inflammatory activities. Mini-Reviews in Medicinal Chemistry, 21(18), 2747–2763. https://doi.org/10.2174/18755607MTA4nMDMiw
  • Zhang, S., Sugawara, Y., Chen, S., Beelman, R. B., Tsuduki, T., Tomata, Y., Matsuyama, S., & Tsuji, I. (2020). Mushroom consumption and incident risk of prostate cancer in Japan: A pooled analysis of the Miyagi Cohort Study and the Ohsaki Cohort Study. International Journal of Cancer, 146(10), 2712–2720. https://doi.org/10.1002/ijc.32591

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.