176
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Discerning of isatin-based monoamine oxidase (MAO) inhibitors for neurodegenerative disorders by exploiting 2D, 3D-QSAR modelling and molecular dynamics simulation

, , , , , , , , & show all
Pages 2328-2340 | Received 23 Jan 2023, Accepted 13 Apr 2023, Published online: 01 Jun 2023

Reference

  • Ahmadi, S., Azizian, H., & Azizian, J. (2021). Imino isatin derivatives; synthesis, in silico molecular dynamic study over monoamine oxidase B, ADME prediction, and in vitro cytotoxicity evaluation. Journal of the Chinese Chemical Society, 68(6), 1090–1103. 2020, https://doi.org/10.1002/jccs.202000170
  • Ayipo, Y. O., Alananzeh, W. A., Ahmad, I., Patel, H., & Mordi, M. N. (2022). Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2104376
  • Bains, J. S., & Shaw, C. A. (1997). Neurodegenerative disorders in humans: The role of glutathione in oxidative stress-mediated neuronal death. Brain Research. Brain Research Reviews, 25(3), 335–358. https://doi.org/10.1016/S0165-0173(97)00045-3
  • Bethea, C. L., Lu, N. Z., Gundlah, C., & Streicher, J. M. (2002). Diverse actions of ovarian steroids in the serotonin neural system. Frontiers in Neuroendocrinology, 23(1), 41–100. https://doi.org/10.1006/frne.2001.0225
  • Bortolato, M., Chen, K., & Shih, J. C. (2008). Monoamine oxidase inactivation: From pathophysiology to therapeutics. Advanced Drug Delivery Reviews, 60(13-14), 1527–1533. https://doi.org/10.1016/j.addr.2008.06.002
  • Chen, S., Zou, L., Li, L., & Wu, T. (2013). The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. PLoS One. 8(1), e53662. https://doi.org/10.1371/journal.pone.0053662
  • Cheng, K., Li, S., Lv, X., Tian, Y., Kong, H., Huang, X., Duan, Y., Han, J., Xie, Z., & Liao, C. (2019). Design, synthesis and biological evaluation of novel human monoamine oxidase B inhibitors based on a fragment in an X-ray crystal structure. Bioorganic & Medicinal Chemistry Letters, 29(8), 1012–1018. https://doi.org/10.1016/j.bmcl.2019.02.008
  • Chowdhary, S., Arora, A., Kumar., & V., Shalini. (2022). A mini review on isatin, an anticancer scaffold with potential activities against neglected tropical diseases (NTDs). Pharmaceuticals, 15(5), 536., https://doi.org/10.3390/ph15050536
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(March), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A BOILED-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Dixon, S. L., Smondyrev, A. M., & Rao, S. N. (2006). PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chemical Biology & Drug Design, 67(5), 370–372. https://doi.org/10.1111/j.1747-0285.2006.00384.x
  • Farhan, M. M., Guma, M. A., Rabeea, M. A., Ahmad, I., & Patel, H. (2022). Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. Journal of Molecular Structure, 1269, 133781. https://doi.org/10.1016/j.molstruc.2022.133781
  • Gramatica, P., Chirico, N., Papa, E., Cassani, S., & Kovarich, S. (2013). QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. Journal of Computational Chemistry, 34(24), 2121–2132. https://doi.org/10.1002/jcc.23361
  • Guo, H. (2019). Isatin derivatives and their anti-bacterial activities. European Journal of Medicinal Chemistry, 164, 678–688. https://doi.org/10.1016/j.ejmech.2018.12.017
  • Halder, A. K., & Dias Soeiro Cordeiro, M. N. (2020). Advanced in Silico Methods for the Development of Anti- Leishmaniasis and Anti-Trypanosomiasis Agents. Current Medicinal Chemistry, 27(5), 697–718. https://doi.org/10.2174/0929867325666181031093702
  • Hammad, S., Bouaziz-Terrachet, S., Meghnem, R., & Meziane, D. (2020). Pharmacophore development, drug-likeness analysis, molecular docking, and molecular dynamics simulations for identification of new CK2 inhibitors. Journal of Molecular Modeling, 26(6), 1–17. https://doi.org/10.1007/S00894-020-04408-2/METRICS
  • Hare, M. L. (1928). Tyramine oxidase: A new enzyme system in liver. The Biochemical Journal, 22(4), 968–979. http://www.ncbi.nlm.nih.gov/pubmed/16744124%0Ahttp://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1252213
  • Hu, Z., Lin, Q., Liu, H., Zhao, T., Yang, B., & Tu, G. (2022). Molecular dynamics-guided receptor-dependent 4D-QSAR studies of HDACs inhibitors. Molecular Diversity, 26(2), 757–768. https://doi.org/10.1007/s11030-021-10181-y
  • Justo, L. A., Durán, R., Alfonso, M., Fajardo, D., & Faro, L. R. F. (2016). Effects and mechanism of action of isatin, a MAO inhibitor, on in vivo striatal dopamine release. Neurochemistry International, 99, 147–157. https://doi.org/10.1016/j.neuint.2016.06.012
  • Koyiparambath, V. P., Oh, J. M., Khames, A., Abdelgawad, M. A., Nair, A. S., Nath, L. R., Gambacorta, N., Ciriaco, F., Nicolotti, O., Kim, H., & Mathew, B. (2021). Trimethoxylated halogenated chalcones as dual inhibitors of mao-b and bace-1 for the treatment of neurodegenerative disorders. Pharmaceutics, 13(6), 850. https://doi.org/10.3390/pharmaceutics13060850
  • Khan, F. A., & Maalik, A. (2015). Advances in pharmacology of isatin and its derivatives: A review. Tropical Journal of Pharmaceutical Research, 14(10), 1937–1942. https://doi.org/10.4314/tjpr.v14i10.28
  • Kim, H., Sablin, S. O., & Ramsay, R. R. (1997). Inhibition of monoamine oxidase A by β-carboline derivatives. Archives of Biochemistry and Biophysics, 337(1), 137–142. https://doi.org/10.1006/abbi.1996.9771
  • Kumar, S., Nair, A. S., Abdelgawad, M. A., & Mathew, B. (2022). Exploration of the Detailed Structure-Activity Relationships of Isatin and Their Isomers As Monoamine Oxidase Inhibitors. ACS Omega. 7(19), 16244–16259. https://doi.org/10.1021/acsomega.2c01470
  • Mali, S. N., Pandey, A., Bhandare, R. R., & Shaik, A. B. (2022). Identification of hydantoin based Decaprenylphosphoryl-β-d-Ribose Oxidase (DprE1) inhibitors as antimycobacterial agents using computational tools. Scientific Reports, 12(1), 1–21. https://doi.org/10.1038/s41598-022-20325-1
  • Manley-King, C. I., Bergh, J. J., & Petzer, J. P. (2011). Inhibition of monoamine oxidase by selected C5- and C6-substituted isatin analogues. Bioorganic & Medicinal Chemistry, 19(1), 261–274. https://doi.org/10.1016/j.bmc.2010.11.028
  • Mannan, A., Singh, T. G., Singh, V., Garg, N., Kaur, A., & Singh, M. (2022). Insights into the Mechanism of the therapeutic potential of herbal monoamine oxidase inhibitors in neurological diseases. Current Drug Targets, 23(3), 286–310. https://doi.org/10.2174/1389450122666210707120256
  • Manzoor, S., & Hoda, N. (2020). A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. European Journal of Medicinal Chemistry, 206, 112787. https://doi.org/10.1016/j.ejmech.2020.112787
  • Masand, V. H., Rastija, V., Patil, M. K., Gandhi, A., & Chapolikar, A. (2020). Extending the identification of structural features responsible for anti-SARS-CoV activity of peptide-type compounds using QSAR modelling. SAR and QSAR in Environmental Research, 31(9), 643–654. https://doi.org/10.1080/1062936X.2020.1784271
  • Mathew, B., Haridas, A., Uçar, G., Baysal, I., Joy, M., Mathew, G. E., Lakshmanan, B., & Jayaprakash, V. (2016). Synthesis, biochemistry, and computational studies of brominated thienyl chalcones: A new class of reversible MAO-B inhibitors. ChemMedChem. 11(11), 1161–1171. https://doi.org/10.1002/cmdc.201600122
  • Mauri, A., & Bertola, M. (2022). Alvascience: A new software suite for the QSAR workflow applied to the blood–brain barrier permeability. International Journal of Molecular Sciences, 23(21), 12882. https://doi.org/10.3390/ijms232112882
  • Medvedev, A., Buneeva, O., Gnedenko, O., Ershov, P., & Ivanov, A. (2018). Isatin, an endogenous nonpeptide biofactor: A review of its molecular targets, mechanisms of actions, and their biomedical implications. BioFactors (Oxford, England), 44(2), 95–108. https://doi.org/10.1002/biof.1408
  • Medvedev, A. E., Goodwin, B., Clow, A., Halket, J., Glover, V., & Sandler, M. (1992). Inhibitory potency of some isatin analogues on human monoamine oxidase A and B. Biochemical Pharmacology, 44(3), 590–592. https://doi.org/10.1016/0006-2952(92)90454-Q
  • Nath, R., Pathania, S., Grover, G., & Akhtar, M. J. (2020). Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. Journal of Molecular Structure, 1222, 128900. https://doi.org/10.1016/j.molstruc.2020.128900
  • Pandey, P., Chaurasiya, N. D., Tekwani, B. L., & Doerksen, R. J. (2018). Interactions of endocannabinoid virodhamine and related analogs with human monoamine oxidase-A and -B. Biochemical Pharmacology, 155(June), 82–91. https://doi.org/10.1016/j.bcp.2018.06.024
  • Parambi, D. G. T., Oh, J. M., Baek, S. C., Lee, J. P., Tondo, A. R., Nicolotti, O., Kim, H., & Mathew, B. (2019). Design, synthesis and biological evaluation of oxygenated chalcones as potent and selective MAO-B inhibitors. Bioorganic Chemistry, 93, 103335. https://doi.org/10.1016/j.bioorg.2019.103335
  • Prah, A., Gavranić, T., Perdih, A., Sollner Dolenc, M., & Mavri, J. (2022). Computational insights into β-carboline inhibition of monoamine oxidase A. Molecules, 27(19), 6711. https://doi.org/10.3390/molecules27196711
  • R. Ramsay, R. (2012). Monoamine oxidases: The biochemistry of the proteins as targets in medicinal chemistry and drug discovery. Current Topics in Medicinal Chemistry, 12(20), 2189–2209. https://doi.org/10.2174/156802612805219978
  • Radwan, H. A., Ahmad, I., Othman, I. M. M., Gad-Elkareem, M. A. M., Patel, H., Aouadi, K., Snoussi, M., & Kadri, A. (2022). Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. Journal of Molecular Structure, 1264, 133312. https://doi.org/10.1016/j.molstruc.2022.133312
  • Sharma, P., Singh, M., & Mathew, B. (2021). An update of synthetic approaches and structure-activity relationships of various classes of human MAO-B inhibitors. ChemistrySelect, 6(7), 1404–1429. https://doi.org/10.1002/slct.202004188
  • Shaw, D. E. (2021). Desmond molecular dynamics system. MaestroDesmond interoperability tools. Research, Schrodinger Release.
  • Silva, B. v. (2013). Isatin, a versatile molecule: Studies in Brazil. Journal of the Brazilian Chemical Society, 24(5), 707–720. https://doi.org/10.5935/0103-5053.20130089
  • Tandarić, T., Prah, A., Stare, J., Mavri, J., & Vianello, R. (2020). Hydride abstraction as the rate-limiting step of the irreversible inhibition of monoamine oxidase B by rasagiline and selegiline: A computational empirical valence bond study. International Journal of Molecular Sciences, 21(17), 6151. https://doi.org/10.3390/ijms21176151
  • Tavari, M., Malan, S. F., & Joubert, J. (2016). Design, synthesis, biological evaluation and docking studies of sulfonyl isatin derivatives as monoamine oxidase and caspase-3 inhibitors. MedChemComm, 7(8), 1628–1639. https://doi.org/10.1039/C6MD00228E
  • Tripathi, R. K. P., Krishnamurthy, S., & Ayyannan, S. R. (2016). Discovery of 3-Hydroxy-3-phenacyloxindole analogues of isatin as potential monoamine oxidase inhibitors. ChemMedChem. 11(1), 119–132. https://doi.org/10.1002/cmdc.201500443
  • Tripathi, A. C., Upadhyay, S., Paliwal, S., & Saraf, S. K. (2018). Privileged scaffolds as MAO inhibitors: Retrospect and prospects. European Journal of Medicinal Chemistry, 145, 445–497. https://doi.org/10.1016/j.ejmech.2018.01.003
  • van der Walt, E. M., Milczek, E. M., Malan, S. F., Edmondson, D. E., Castagnoli, N., Bergh, J. J., & Petzer, J. P. (2009). Inhibition of monoamine oxidase by (E)-styrylisatin analogues. Bioorganic & Medicinal Chemistry Letters, 19(9), 2509–2513. https://doi.org/10.1016/j.bmcl.2009.03.030
  • Varpe, B. D., Jadhav, S. B., Chatale, B. C., Mali, A. S., Jadhav, S. Y., & Kulkarni, A. A. (2020). 3D-QSAR and Pharmacophore modeling of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Structural Chemistry, 31(5), 1675–1690. https://doi.org/10.1007/s11224-020-01503-1
  • Varpe, B. D., Kulkarni, A. A., Jadhav, S. B., Mali, A. S., & Jadhav, S. Y. (2021). Isatin hybrids and their pharmacological investigations. Mini Reviews in Medicinal Chemistry, 21(10), 1182–1225. https://doi.org/10.2174/1389557520999201209213029
  • Vijaya Prabhu, S., & Singh, S. K. (2018). Atom-based 3D-QSAR, induced fit docking, and molecular dynamics simulations study of thieno[2,3-b]pyridines negative allosteric modulators of mGluR5. Journal of Receptor and Signal Transduction Research, 38(3), 225–239. https://doi.org/10.1080/10799893.2018.1476542
  • Vishnu, M. S., Pavankumar, V., Kumar, S., & Raja, A. S. (2019). Experimental and computational evaluation of piperonylic acid derived hydrazones bearing isatin moieties as dual inhibitors of cholinesterases and monoamine oxidases. ChemMedChem. 14 (14), 1359–1376. https://doi.org/10.1002/cmdc.201900277
  • Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/JCC.21707
  • Yeung, A. W. K., Georgieva, M. G., Atanasov, A. G., & Tzvetkov, N. T. (2019). Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: Research literature analysis. Frontiers in Molecular Neuroscience, 12, 143. https://doi.org/10.3389/fnmol.2019.00143
  • Youdim, M. B., Gross, A., & Finberg, J. P. (2001). Rasagiline [N‐propargyl‐1R (+)‐aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. British Journal of Pharmacology, 132(2), 500–506. https://doi.org/10.1038/sj.bjp.0703826
  • Youdim, M. B., & Riederer, P. (1993). The role of iron in senescence of dopaminergic neurons in Parkinson’s disease. Journal of Neural Transmission. Supplementum, 40, 57–67. PMID:8294901
  • Zhang, Y. Z., Du, H. Z., Liu, H. L., He, Q. S., & Xu, Z. (2020). Isatin dimers and their biological activities. Archiv Der Pharmazie, 353(3), 1900299. https://doi.org/10.1002/ardp.201900299
  • Zoete, V., Daina, A., Bovigny, C., & Michielin, O. (2016). SwissSimilarity: A web tool for low to ultra high throughput ligand-based virtual screening. Journal of Chemical Information and Modeling, 56(8), 1399–1404. https://doi.org/10.1021/acs.jcim.6b00174

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.