264
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discovery of novel PARP-1 inhibitors using tandem in silico studies: integrated docking, e-pharmacophore, deep learning based de novo and molecular dynamics simulation approach

ORCID Icon, , ORCID Icon &
Pages 3396-3409 | Received 07 Feb 2023, Accepted 05 May 2023, Published online: 22 May 2023

References

  • Al-Sanea, M. M., Chilingaryan, G., Abelyan, N., Mamikonyan, M., Gasparyan, H., Hovhannisyan, S., Hamdi, A., Ali, A. R., Selim, S., & Mohamed, A. A. B. (2022). Combination of ligand and structure based virtual screening approaches for the discovery of potential PARP1 inhibitors. PloS One, 17(9), e0272065. https://doi.org/10.1371/journal.pone.0272065
  • Bai, Q., Ma, J., Liu, S., Xu, T., Banegas-Luna, A. J., Pérez-Sánchez, H., Tian, Y., Huang, J., Liu, H., & Yao, X. (2021). WADDAICA: A webserver for aiding protein drug design by artificial intelligence and classical algorithm. Computational and Structural Biotechnology Journal, 19, 3573–3579. https://doi.org/10.1016/j.csbj.2021.06.017
  • Batool, M., Ahmad, B., & Choi, S. (2019). A structure-based drug discovery paradigm. International Journal of Molecular Sciences, 20(11), 2783. https://doi.org/10.3390/ijms20112783
  • Chen, A. (2011). PARP inhibitors: Its role in treatment of cancer. Chinese Journal of Cancer, 30(7), 463–471. https://doi.org/10.5732/cjc.011.10111
  • Dawicki-McKenna, J. M., Langelier, M.-F., DeNizio, J. E., Riccio, A. A., Cao, C. D., Karch, K. R., McCauley, M., Steffen, J. D., Black, B. E., & Pascal, J. M. (2015). PARP-1 activation requires local unfolding of an autoinhibitory domain. Molecular Cell, 60(5), 755–768. https://doi.org/10.1016/j.molcel.2015.10.013
  • Gani, O. A., Narayanan, D., & Engh, R. A. (2013). Evaluating the predictivity of virtual screening for ABL kinase inhibitors to hinder drug resistance. Chemical Biology & Drug Design, 82(5), 506–519. https://doi.org/10.1111/cbdd.12170
  • Godschalk, F., Genheden, S., Söderhjelm, P., & Ryde, U. (2013). Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations. Physical Chemistry Chemical Physics : PCCP, 15(20), 7731–7739. https://doi.org/10.1039/C3CP00116D
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Huang, N., Kalyanaraman, C., Bernacki, K., & Jacobson, M. P. (2006). Molecular mechanics methods for predicting protein–ligand binding. Physical Chemistry Chemical Physics : PCCP, 8(44), 5166–5177. https://doi.org/10.1039/B608269F
  • Ju, J., Zhu, A. J., & Yuan, P. (2018). Progress in targeted therapy for breast cancer. Chronic Diseases and Translational Medicine, 4(3), 164–175. https://doi.org/10.1016/j.cdtm.2018.04.002
  • Kirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection–what can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3-4), 213–228. https://doi.org/10.1007/s10822-007-9163-6
  • Kumar, A., Rathi, E., & Kini, S. G. (2019). E-pharmacophore modelling, virtual screening, molecular dynamics simulations and in-silico ADME analysis for identification of potential E6 inhibitors against cervical cancer. Journal of Molecular Structure, 1189, 299–306. https://doi.org/10.1016/j.molstruc.2019.04.023
  • Li, S., Li, X. Y., Zhang, T. J., Zhu, J., Xue, W. H., Qian, X. H., & Meng, F. H. (2020). Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorganic Chemistry, 96, 103575. https://doi.org/10.1016/j.bioorg.2020.103575
  • Liu, T., Song, S., Wang, X., & Hao, J. (2021). Small-molecule inhibitors of breast cancer-related targets: Potential therapeutic agents for breast cancer. European Journal of Medicinal Chemistry, 210, 112954. https://doi.org/10.1016/j.ejmech.2020.112954
  • Livraghi, L., & Garber, J. E. (2015). PARP inhibitors in the management of breast cancer: Current data and future prospects. BMC Medicine, 13, 188. https://doi.org/10.1186/s12916-015-0425-1
  • Mehta, P., Srivastava, S., Sharma, M., & Malik, R. (2019). Discovery of novel chemotypes for competitive AMPA receptor antagonists as potential antiepileptic agents through structure-based virtual screening of natural products library. Structural Chemistry, 30(4), 1159–1172. https://doi.org/10.1007/s11224-018-1269-z
  • Morales, J., Li, L., Fattah, F. J., Dong, Y., Bey, E. A., Patel, M., Gao, J., & Boothman, D. A. (2014). Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Critical Reviews in Eukaryotic Gene Expression, 24(1), 15–28. https://doi.org/10.1615/critreveukaryotgeneexpr.2013006875
  • Mouchlis, V. D., Afantitis, A., Serra, A., Fratello, M., Papadiamantis, A. G., Aidinis, V., Lynch, I., Greco, D., & Melagraki, G. (2021). Advances in de novo drug design: From conventional to machine learning methods. International Journal of Molecular Sciences, 22(4), 1676. https://doi.org/10.3390/ijms22041676
  • Nath, V., Paul, R. K., Kumar, N., & Kumar, V. (2022). Identification of behenic acid as medicinal food for the diabetes mellitus: Structure-based computational approach and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(3), 73. https://doi.org/10.1007/s00894-022-05060-8
  • Nath, V., Ramchandani, M., Kumar, N., Agrawal, R., & Kumar, V. (2021). Computational identification of potential dipeptidyl peptidase (DPP)-IV inhibitors: Structure based virtual screening, molecular dynamics simulation and knowledge based SAR studies. Journal of Molecular Structure, 1224, 129006. https://doi.org/10.1016/j.molstruc.2020.129006
  • Ntie-Kang, F. (2013). An in silico evaluation of the ADMET profile of the StreptomeDB database. SpringerPlus, 2, 353–353. https://doi.org/10.1186/2193-1801-2-353
  • Ramadan, S. K., Elrazaz, E. Z., Abouzid, K. A. M., & El-Naggar, A. M. (2020). Design, synthesis and in silico studies of new quinazolinone derivatives as antitumor PARP-1 inhibitors. RSC Advances, 10(49), 29475–29492. https://doi.org/10.1039/D0RA05943A
  • Rapp, C., Kalyanaraman, C., Schiffmiller, A., Schoenbrun, E. L., & Jacobson, M. P. (2011). A Molecular mechanics approach to modeling protein–ligand interactions: Relative binding affinities in congeneric series. Journal of Chemical Information and Modeling, 51(9), 2082–2089. https://doi.org/10.1021/ci200033n
  • Rose, M., Burgess, J. T., O'Byrne, K., Richard, D. J., & Bolderson, E. (2020). PARP inhibitors: Clinical relevance, mechanisms of action and tumor resistance. Frontiers in Cell and Developmental Biology, 8, 564601. https://doi.org/10.3389/fcell.2020.564601
  • Salam, N. K., Nuti, R., & Sherman, W. (2009). Novel method for generating structure-based pharmacophores using energetic analysis. Journal of Chemical Information and Modeling, 49(10), 2356–2368. https://doi.org/10.1021/ci900212v
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Shaw, D. E., Maragakis, P., Lindorff-Larsen, K., Piana, S., Dror, R. O., Eastwood, M. P., Bank, J. A., Jumper, J. M., Salmon, J. K., Shan, Y., & Wriggers, W. (2010). Atomic-level characterization of the structural dynamics of proteins. Science (New York, N.Y.), 330(6002), 341–346. https://doi.org/10.1126/science.1187409
  • Shi, D., Pang, Q., Qin, Q., Yao, X., Yao, X., & Yu, Y. (2022). Discovery of novel anti-tumor compounds targeting PARP-1 with induction of autophagy through in silico and in vitro screening. Frontiers in Pharmacology, 13, 1026306. https://doi.org/10.3389/fphar.2022.1026306
  • Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2022). Cancer statistics, 2022. CA: A Cancer Journal for Clinicians, 72(1), 7–33. https://doi.org/10.3322/caac.21708
  • Singh, D. D., Parveen, A., & Yadav, D. K. (2021). Role of PARP in TNBC: Mechanism of inhibition, clinical applications, and resistance. Biomedicines, 9(11), 1512. https://doi.org/10.3390/biomedicines9111512
  • Singh, K. D., Kirubakaran, P., Nagarajan, S., Sakkiah, S., Muthusamy, K., Velmurgan, D., & Jeyakanthan, J. (2012). Homology modeling, molecular dynamics, e-pharmacophore mapping and docking study of Chikungunya virus nsP2 protease. Journal of Molecular Modeling, 18(1), 39–51. https://doi.org/10.1007/s00894-011-1018-3
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Telli, M. L., & Ford, J. M. (2010). PARP inhibitors in breast cancer. Clinical Advances in Hematology and Oncology, 8(9), 629–635.
  • Toledo Warshaviak, D., Golan, G., Borrelli, K. W., Zhu, K., & Kalid, O. (2014). Structure-based virtual screening approach for discovery of covalently bound ligands. Journal of Chemical Information and Modeling, 54(7), 1941–1950. https://doi.org/10.1021/ci500175r
  • Verma, P., Tiwari, M., & Tiwari, V. (2018). In silico high-throughput virtual screening and molecular dynamics simulation study to identify inhibitor for AdeABC efflux pump of Acinetobacter baumannii. Journal of Biomolecular Structure & Dynamics, 36(5), 1182–1194. https://doi.org/10.1080/07391102.2017.1317025
  • Wang, R., Cong, Y., Li, M., Bao, J., Qi, Y., & Zhang, J. Z. H. (2020). Molecular mechanism of selective binding of NMS-P118 to PARP-1 and PARP-2: A computational perspective. Frontiers in Molecular Biosciences, 7, 50. https://doi.org/10.3389/fmolb.2020.00050

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.