671
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis, biological evaluation and docking analysis of pyrrolidine-benzenesulfonamides as carbonic anhydrase or acetylcholinesterase inhibitors and antimicrobial agents

ORCID Icon, ORCID Icon, , , ORCID Icon, , ORCID Icon, ORCID Icon, , & ORCID Icon show all
Pages 3441-3458 | Received 17 Feb 2023, Accepted 06 May 2023, Published online: 26 May 2023

References

  • Abbas, H. A., & Wierda, W. G. (2021). Acalabrutinib: A selective Bruton tyrosine kinase inhibitor for the treatment of B-cell malignancies. Frontiers in Oncology, 11. https://doi.org/10.3389/fonc.2021.668162
  • Accelrys Software Inc. (2013). Discovery studio modeling environment. Release 3.5 Accelrys Software Inc, San Diego
  • Amani Shafeek Awaad AMAA, Reham Mostafa, & El-Meligy (2017). Amino substituted acetamide derivative. US 9,598,361 BI. King Saud University;
  • Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacological Research, 36(4), 375–399. https://doi.org/10.1007/s12272-013-0036-3
  • Angeli, A., Ferraroni, M., Nocentini, A., Selleri, S., Gratteri, P., Supuran, C. T., & Carta, F. (2019). Polypharmacology of epacadostat: A potent and selective inhibitor of the tumor associated carbonic anhydrases IX and XII. Chemical Communications (Cambridge, England), 55(40), 5720–5723. https://doi.org/10.1039/c8cc09568j
  • Arslan, S., Loğoğlu, E., & Oktemer, A. (2006). Antimicrobial activity studies on some piperidine and pyrrolidine substituted halogenobenzene derivatives. Journal of Enzyme Inhibition & Medicinal Chemistry, 21(2), 211–214. https://doi.org/10.1080/14756360600563063
  • Arumugam, N., Almansour, A. I., Kumar, R. S., Krishna, V. S., Sriram, D., & Dege, N. (2021). Stereoselective synthesis and discovery of novel spirooxindolopyrrolidine engrafted indandione heterocyclic hybrids as antimycobacterial agents. Bioorganic Chemistry, 110.
  • Askin, S., Tahtaci, H., Turkes, C., et al. (2021). Design, synthesis, characterization, in vitro and in silico evaluation of novel imidazo[2,1-b][1,3,4]thiadiazoles as highly potent acetylcholinesterase and non-classical carbonic anhydrase inhibitors. Bioorganic Chemistry, 113.
  • Aydinoglu, S., Biver, T., Figuccia, S., Fiore, T., Montanaro, S., & Pellerito, C. (2016). Studies on DNA interaction of organotin(IV) complexes of meso-tetra(4-sulfonatophenyl)porphine that show cellular activity. Journal of Inorganic Biochemistry, 163, 311–317. https://doi.org/10.1016/j.jinorgbio.2016.06.030
  • Aydinoglu, S., Pasti, A., Biver, T., & Mennucci, B. (2019). Auramine O interaction with DNA: A combined spectroscopic and TD-DFT analysis. Physical Chemistry Chemical Physics: PCCP, 21(37), 20606–20612. https://doi.org/10.1039/c9cp03071a
  • Bank RPD RCSB PDB: Homepage. https://www.rcsb.org/
  • Belveren, S., Döndas, H. A., Ülger, M., Poyraz, S., García-Mingüens, E., Ferrándiz-Saperas, M., & Sansano, J. M. (2017). Synthesis of highly functionalized 2-(pyrrolidin-1-yl)thiazole frameworks with interesting antibacterial and antimycobacterial activity. Tetrahedron, 73(48), 6718–6727. https://doi.org/10.1016/j.tet.2017.10.007
  • Belveren, S., Larrañaga, O., Poyraz, S., Döndas, H. A., Ülger, M., Şahin, E., Ferrándiz-Saperas, M., Sansano, J., de Gracia Retamosa, M., & de Cózar, A. (2019). From bioactive pyrrolidino[3,4-c] pyrrolidines to more bioactive pyrrolidino[3,4-b] pyrrolidines via ring-opening/ring-closing promoted by sodium methoxide. Synthesis, 51(07), 1565–1577. https://doi.org/10.1055/s-0037-1611356
  • Bongomin, F., Gago, S., Oladele, R. O., & Denning, D. W. (2017). Global and multi-national prevalence of fungal diseases-estimate precision. Journal of Fungi, 3(4).
  • Caglayan, C., Taslimi, P., Demir, Y., Kucukler, S., Kandemir, F. M., & Gulcin, I. (2019). The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. Journal of Biochemistry & Molecular Toxicology, 33(10).
  • Caglayan, C., Taslimi, P., Türk, C., Gulcin, İ., Kandemir, F. M., Demir, Y., & Beydemir, Ş. (2020). Inhibition effects of some pesticides and heavy metals on carbonic anhydrase enzyme activity purified from horse mackerel (Trachurus trachurus) gill tissues. Environmental Science & Pollution Research International, 27(10), 10607–10616. https://doi.org/10.1007/s11356-020-07611-z
  • Chalkha, M., Nakkabi, A., & Ben Hadda, T. (2022). Crystallographic study, biological assessment and POM/docking studies of pyrazoles-sulfonamide hybrids (PSH): Identification of a combined antibacterial/antiviral pharmacophore sites leading to in-silico screening the anti-Covid-19 activity. Journal of Molecular Structure, 1267.
  • Choubey, P. K., Tripathi, A., Sharma, P., & Shrivastava, S. K. (2020). Design, synthesis, and multitargeted profiling of N-benzylpyrrolidine derivatives for the treatment of Alzheimer’s disease. Bioorganic Medicinal Chemistry, 28(22).
  • De Luca, V., Vullo, D., Del Prete, S., Carginale, V., Osman, S. M., AlOthman, Z., Supuran, C. T., & Capasso, C. (2016). Cloning, characterization and anion inhibition studies of a gamma-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic & Medicinal Chemistry, 24(4), 835–840. https://doi.org/10.1016/j.bmc.2016.01.005
  • Del Prete, S., Isik, S., Vullo, D., De Luca, V., Carginale, V., Scozzafava, A., Supuran, C. T., & Capasso, C. (2012). DNA cloning, characterization, and inhibition studies of an alpha-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Journal of Medicinal Chemistry, 55(23), 10742–10748. https://doi.org/10.1021/jm301611m
  • Döndas, H. A., Retamosa, M. D., & Sansano, J. M. (2017). Current trends towards the synthesis of bioactive heterocycles and natural products using 1,3-dipolar cycloadditions (1,3-DC) with azomethine ylides. Synthesis, 49(13), 2819–2851. https://doi.org/10.1055/s-0036-1588423
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information & Modeling, 61(8), 3891-3898.
  • Ellman, G. L., Courtney, K. D., Andres, V., Jr., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7, 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Erdogan, M. K., Gundogdu, R., Yapar, Y., Gecibesler, I. H., Kirici, M., Behcet, L., Tüzün, B., Taskin-Tok, T., & Taslimi, P. (2023). In vitro anticancer, antioxidant and enzyme inhibitory potentials of endemic Cephalaria elazigensis var. purpurea with in silico studies. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2163700
  • Ewies, E. F., Sabry, E., Bekheit, M. S., Fouad, M. A., Vullo, D., & Supuran, C. T. (2022). Click chemistry-based synthesis of new benzenesulfonamide derivatives bearing triazole ring as selective carbonic anhydrase II inhibitors. Drug Development Research, 83(6), 1281–1291. https://doi.org/10.1002/ddr.21957
  • Feng, J., Qi, H., Sun, X., Feng, S., Liu, Z., Song, Y., & Qiao, X. (2018). Synthesis of novel pyrazole derivatives as promising DNA-binding agents and evaluation of antitumor and antitopoisomerases I/II activities. Chemical & Pharmaceutical Bulletin, 66(11), 1065–1071. https://doi.org/10.1248/cpb.c18-00546
  • Frejat, F. O. A., Cao, Y. Q., Wang, L. H., et al. (2022). New 1,2,4-oxadiazole/pyrrolidine hybrids as topoisomerase IV and DNA gyrase inhibitors with promising antibacterial activity. Archiv Der Pharmazie, 355(7).
  • Gahlaut, A. (2013). Evaluation of antibacterial potential of plant extracts using resazurin based microtiter dilution assay. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 372–376.
  • Gaussian, Revision E., Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., et. al. (2009). Gaussian, Inc.
  • Gümüş, M., Babacan, Ş. N., Demir, Y., Sert, Y., Koca, İ., & Gülçin, İ. (2022). Discovery of sulfadrug-pyrrole conjugates as carbonic anhydrase and acetylcholinesterase inhibitors. Archiv Der Pharmazie, 355(1), e2100242. https://doi.org/10.1002/ardp.202100242
  • Gungor, S. A., Tumer, M., Kose, M., & Erkan, S. (2022). N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies. Journal of Biomolecular Structure & Dynamics, 40(16), 7424–7438.
  • Guzeldemirci, N. U., & Kucukbasmaci, O. (2010). Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety. European Journal of Medicinal Chemistry, 45(1), 63–68. https://doi.org/10.1016/j.ejmech.2009.09.024
  • Hamide, M., Gok, Y., & Demir, Y. (2022). Pentafluorobenzyl-substituted benzimidazolium salts: Synthesis, characterization, crystal structures, computational studies and inhibitory properties of some metabolic enzymes. Journal of Molecular Structure, 1265.
  • Ibrahim, N. M., Fahim, S. H., Hassan, M., Farag, A. E., & Georgey, H. H. (2022). Design and synthesis of ciprofloxacin-sulfonamide hybrids to manipulate ciprofloxacin pharmacological qualities: Potency and side effects. European Journal of Medicinal Chemistry, 228.
  • Javed, M. A., Bibi, S., Jan, M. S., Ikram, M., Zaidi, A., Farooq, U., Sadiq, A., & Rashid, U. (2022). Diclofenac derivatives as concomitant inhibitors of cholinesterase, monoamine oxidase, cyclooxygenase-2 and 5-lipoxygenase for the treatment of Alzheimer’s disease: Synthesis, pharmacology, toxicity and docking studies. RSC Advances, 12(35), 22503–22517. https://doi.org/10.1039/d2ra04183a
  • Kaya, G., Noma, S. A. A., Barut Celepci, D., Bayıl, İ., Taskin-Tok, T., Gök, Y., Ateş, B., Aktaş, A., Aygün, M., & Tezcan, B. (2023). Design, synthesis, spectroscopic characterizations, single crystal X-ray analysis, in vitro xanthine oxidase and acetylcholinesterase inhibitory evaluation as well as in silico evaluation of selenium-based N-heterocyclic carbene compounds. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2022.2163696
  • Kelley, B. J., & Petersen, R. C. (2007). Alzheimer’s disease and mild cognitive impairment. Neurologic Clinics, 25(3), 577–609. https://doi.org/10.1016/j.ncl.2007.03.008
  • Kumar, R., Kumar, A., & Ram, S. (2022). Novel benzenesulfonamide-bearing pyrazoles and 1,2,4-thiadiazoles as selective carbonic anhydrase inhibitors. Archiv Der Pharmazie. 355(1).
  • Larner, A. J. (2010). Cholinesterase inhibitors: Beyond Alzheimer’s disease. Expert Review of Neurotherapeutics, 10(11), 1699–1705. https://doi.org/10.1586/ern.10.105
  • Le Duc, Y., Licsandru, E., Vullo, D., Barboiu, M., & Supuran, C. T. (2017). Carbonic anhydrases activation with 3-amino-1H-1,2,4-triazole-1-carboxamides: Discovery of subnanomolar isoform II activators. Bioorganic & Medicinal Chemistry, 25(5), 1681–1686. https://doi.org/10.1016/j.bmc.2017.01.031
  • Lorthiois, E., Breitenstein, W., Cumin, F., Ehrhardt, C., Francotte, E., Jacoby, E., Ostermann, N., Sellner, H., Kosaka, T., Webb, R. L., Rigel, D. F., Hassiepen, U., Richert, P., Wagner, T., & Maibaum, J. (2013). The discovery of novel potent trans-3,4-disubstituted pyrrolidine inhibitors of the human aspartic protease renin from in silico three-dimensional (3D) pharmacophore searches. Journal of Medicinal Chemistry, 56(6), 2207–2217. https://doi.org/10.1021/jm3017078
  • Łowicki, D., & Przybylski, P. (2022). Tandem construction of biological relevant aliphatic 5-membered N-heterocycles. European Journal of Medicinal Chemistry, 235, 114303. https://doi.org/10.1016/j.ejmech.2022.114303
  • Mancuso, F., Angeli, A., De Luca, V., et al. (2022). Synthesis and biological evaluation of sulfonamide-based compounds as inhibitors of carbonic anhydrase from Vibrio cholerae. Archiv Der Pharmazie, 355(10).
  • Monti, S. M., Maresca, A., Viparelli, F., Carta, F., De Simone, G., Mühlschlegel, F. A., Scozzafava, A., & Supuran, C. T. (2012). Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from Cryptococcus neoformans, Candida albicans and Candida glabrata. Bioorganic & Medicinal Chemistry Letters, 22(2), 859–862. https://doi.org/10.1016/j.bmcl.2011.12.033
  • NCCLS, 940 West Valley Road, Suite 1400 (2002). Wayne, Pennsylvania 19087-1898 USA.
  • NCCLS. National Committee for Clinical Laboratory Standards (2003). Susceptibility testing of Mycobacteria, Nocardia, and other aerobic actinomycetes: Approved Standard NCCLS Document M24-A. NCCLS, Wayne, Pennsylvania.
  • NCCLS. Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard-second edition. NCCLS document M27-A2 (ISBN 1-56238-469-4).
  • Nemr, M. T. M., AboulMagd, A. M., Hassan, H. M., Hamed, A. A., Hamed, M. I. A., & Elsaadi, M. T. (2021). Design, synthesis and mechanistic study of new benzenesulfonamide derivatives as anticancer and antimicrobial agents via carbonic anhydrase IX inhibition. RSC Advances, 11(42), 26241–26257. https://doi.org/10.1039/d1ra05277b
  • Nishimori, I., Minakuchi, T., Maresca, A., Carta, F., Scozzafava, A., & Supuran, C. T. (2010). The beta-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Current Pharmaceutical Design, 16(29), 3300–3309. https://doi.org/10.2174/138161210793429814
  • Nishimori, I., Onishi, S., Takeuchi, H., & Supuran, C. T. (2008). The alpha and beta classes carbonic anhydrases from Helicobacter pylori as novel drug targets. Current Pharmaceutical Design, 14(7), 622–630. https://doi.org/10.2174/138161208783877875
  • Nocentini, A., Moi, D., Balboni, G., Salvadori, S., Onnis, V., & Supuran, C. T. (2018). Synthesis and biological evaluation of novel pyrazoline-based aromatic sulfamates with potent carbonic anhydrase isoforms II, IV and IX inhibitory efficacy. Bioorganic Chemistry, 77, 633–639. https://doi.org/10.1016/j.bioorg.2018.02.021
  • Osmaniye, D., Turkes, C., Demir, Y., Ozkay, Y., Beydemir, S., & Kaplancikli, Z. A. (2022). Design, synthesis, and biological activity of novel dithiocarbamate-methylsulfonyl hybrids as carbonic anhydrase inhibitors. Archiv Der Pharmazie, 355(8).
  • Palomino, J. C., Martin, A., Camacho, M., Guerra, H., Swings, J., & Portaels, F. (2002). Resazurin microtiter assay plate: Simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrobial Agents & Chemotherapy, 46(8), 2720–2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002
  • Parish, T. (2019). Steps to address anti-microbial drug resistance in today’s drug discovery. Expert Opinion on Drug Discovery, 14(2), 91–94. https://doi.org/10.1080/17460441.2019.1550481
  • Pourtaher, H., Hasaninejad, A., & Iraji, A. (2022). Design, synthesis, in silico and biological evaluations of novel polysubstituted pyrroles as selective acetylcholinesterase inhibitors against Alzheimer’s disease. Scientific Reports, 12(1) https://doi.org/10.1038/s41598-022-18224-6
  • Poyraz, S., Belveren, S., Ülger, M., Şahin, E., & Döndaş, H. A. (2017). Synthesis, characterization, crystal structure, and antituberculosis activity of some novel polysubstituted aminocarbothiol/thiohydantoin-pyrrolidine derivatives. Monatshefte Für Chemie: Chemical Monthly, 148(12), 2173–2182. https://doi.org/10.1007/s00706-017-2039-0
  • Poyraz, S., Canacankatan, N., Belveren, S., Yetkin, D., Kibar, K., Ülger, M., Sansano, J. M., Özcelik, N. D., Necat Yılmaz, Ş., & Döndaş, H. A. (2018). Study of the anti(myco)bacterial and antitumor activities of prolinate and N-amidocarbothiolprolinate derivatives based on fused tetrahydropyrrolo[3,4-c]pyrrole-1,3(2H,3aH)-dione, bearing an indole ring. Monatshefte Für Chemie: Chemical Monthly, 149(12), 2253–2263. https://doi.org/10.1007/s00706-018-2286-8
  • Rescifina, A., Zagni, C., Varrica, M. G., Pistara, V., & Corsaro, A. (2014). Recent advances in small organic molecules as DNA intercalating agents: Synthesis, activity, and modeling. European Journal of Medicinal Chemistry, 74, 95–115. https://doi.org/10.1016/j.ejmech.2013.11.029
  • Saglik, B. N., Cevik, U. A., Osmaniye, D., et al. (2019). Synthesis, molecular docking analysis and carbonic anhydrase I-II inhibitory evaluation of new sulfonamide derivatives. Bioorganic Chemistry, 91.
  • Sever, B., Türkeş, C., Altıntop, M. D., Demir, Y., & Beydemir, Ş. (2020). Thiazolyl-pyrazoline derivatives: In vitro and in silico evaluation as potential acetylcholinesterase and carbonic anhydrase inhibitors. International Journal of Biological Macromolecules, 163, 1970–1988. https://doi.org/10.1016/j.ijbiomac.2020.09.043
  • Sonmez, M., Celebi, M., & Berber, I. (2010). Synthesis, spectroscopic and biological studies on the new symmetric Schiff base derived from 2,6-diformyl-4-methylphenol with N-aminopyrimidine. European Journal of Medicinal Chemistry, 45(5), 1935–1940. https://doi.org/10.1016/j.ejmech.2010.01.035
  • Soyer, Z., Uysal, S., Parlar, S., Dogan, A. H. T., & Alptuzun, V. (2017). Synthesis and molecular docking studies of some 4-phthalimidobenzenesulfonamide derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors. Journal of Enzyme Inhibition & Medicinal Chemistry, 32(1), 13–19. https://doi.org/10.1080/14756366.2016.1226298
  • Supuran, C. T. (2008). Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators. Nature Reviews: Drug Discovery, 7(2), 168–181. https://doi.org/10.1038/nrd2467
  • Supuran, C. T. (2011). Bacterial carbonic anhydrases as drug targets: Toward novel antibiotics? Frontiers in Pharmacology, 2, 34. https://doi.org/10.3389/fphar.2011.00034
  • Supuran, C. T. (2016). How many carbonic anhydrase inhibition mechanisms exist? Journal of Enzyme Inhibition & Medicinal Chemistry, 31(3), 345–360. https://doi.org/10.3109/14756366.2015.1122001
  • Supuran, C. T. (2021). Novel carbonic anhydrase inhibitors. Future Medicinal Chemistry, 13(22), 1935–1937.
  • Supuran, C. T. (2022). Anti-obesity carbonic anhydrase inhibitors: Challenges and opportunities. Journal of Enzyme Inhibition & Medicinal Chemistry, 37(1), 2478–2488. https://doi.org/10.1080/14756366.2022.2121393
  • Temperini, C., Scozzafava, A., & Supuran, C. T. (2008). Carbonic anhydrase activation and the drug design. Current Pharmaceutical Design, 14(7), 708–715. https://doi.org/10.2174/138161208783877857
  • Tok, F., Saglik, B. N., Ozkay, Y., & Kaplancikli, Z. A. (2022). Kocyigit-Kaymakcioglu B. Design, synthesis, biological activity evaluation and in silico studies of new nicotinohydrazide derivatives as multi-targeted inhibitors for Alzheimer’s disease. Journal of Molecular Structure, 1265.
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31, 455–461.
  • Trunkfield, A. E., Gurcha, S. S., Besra, G. S., & Bugg, T. D. H. (2010). Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorganic & Medicinal Chemistry, 18(7), 2651–2663. https://doi.org/10.1016/j.bmc.2010.02.026
  • Tugrak, M., Gul, H. I., Demir, Y., Levent, S., & Gulcin, I. (2021). Synthesis and in vitro carbonic anhydrases and acetylcholinesterase inhibitory activities of novel imidazolinone-based benzenesulfonamides. Archiv Der Pharmazie, 354(4), 2000375. https://doi.org/10.1002/ardp.202000375
  • Türkan, F., Huyut, Z., Demir, Y., Ertaş, F., & Beydemir, Ş. (2019). The effects of some cephalosporins on acetylcholinesterase and glutathione S-transferase: An in vivo and in vitro study. Archives of Physiology & Biochemistry, 125(3), 235–243. https://doi.org/10.1080/13813455.2018.1452037
  • Türkeş, C., Demir, Y., & Beydemir, Ş. (2022). Some calcium-channel blockers: Kinetic and in silico studies on paraoxonase-I. Journal of Biomolecular Structure & Dynamics, 40(1), 77–85. https://doi.org/10.1080/07391102.2020.1806927
  • Wang, N., Liu, W., Zhou, L., Liu, W., Liang, X., Liu, X., Xu, Z., Zhong, T., Wu, Q., Jiao, X., Chen, J., Ning, X., Jiang, X., & Zhao, Q. (2022). Design, synthesis, and biological evaluation of notopterol derivatives as triple inhibitors of AChE/BACE1/GSK3 beta for the treatment of Alzheimer’s disease. ACS Omega, 7(36), 32131–32152. https://doi.org/10.1021/acsomega.2c03368
  • Wesołowska, A., Nikiforuk, A., Stachowicz, K., & Tatarczyńska, E. (2006). Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology, 51(3), 578–586. https://doi.org/10.1016/j.neuropharm.2006.04.017
  • WHO (2017). Prioritization of pathogens to guide discovery, research, and development of new antibiotics for drug-resistant bacterial infections, including tuberculosis. WHO/EMP/IAU/201712 2017.
  • Yamali, C., Gul, H. I., & Ozli, G. (2021). Exploring of tumor-associated carbonic anhydrase isoenzyme IX and XII inhibitory effects and cytotoxicities of the novel N-aryl-1-(4-sulfamoylphenyl)-5-(thiophen-2-yl)-1H-pyrazole-3-carboxamides. Bioorganic Chemistry, 115.
  • Yamali, C., Gul, H. I., Cakir, T., Demir, Y., & Gulcin, I. (2020). Aminoalkylated phenolic chalcones: Investigation of biological effects on acetylcholinesterase and carbonic anhydrase I and II as potential lead enzyme inhibitors. Letters in Drug Design & Discovery, 17(10), 1283–1292. https://doi.org/10.2174/1570180817999200520123510
  • Yamali, C., Gul, H. I., Kazaz, C., Levent, S., & Gulcin, I. (2020). Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorganic Chemistry, 96.
  • Yamali, C., Gul, H. I., Sakarya, M. T., et al. (2022a). Quinazolinone-based benzenesulfonamides with low toxicity and high affinity as monoamine oxidase-A inhibitors: Synthesis, biological evaluation and induced-fit docking studies. Bioorganic Chemistry, 124.
  • Yamali, C., Sakagami, H., Satoh, K., Bandow, K., Uesawa, Y., Bua, S., Angeli, A., Supuran, C. T., & Gul, H. I. (2022b). Investigation of carbonic anhydrase inhibitory effects and cytotoxicities of pyrazole-based hybrids carrying hydrazone and zinc-binding benzenesulfonamide pharmacophores. Bioorganic Chemistry, 127, 105969. https://doi.org/10.1016/j.bioorg.2022.105969
  • Zhang, J., Pan, X., Wang, C., Wang, F., Li, P., Xu, W., & He, L. (2012). Pharmacophore modeling, 3D-QSAR studies, and in-silico ADME prediction of pyrrolidine derivatives as neuraminidase inhibitors. Chemical Biology & Drug Design, 79(3), 353–359. https://doi.org/10.1111/j.1747-0285.2011.01299.x
  • Zhang, P. F., Xu, S. T., Zhu, Z. Y., & Xu, J. Y. (2019). Multi-target design strategies for the improved treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 176, 228–247. https://doi.org/10.1016/j.ejmech.2019.05.020
  • Zverova, M. (2019). Clinical aspects of Alzheimer’s disease. Clinical Biochemistry, 72, 3–6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.