584
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Immunoinformatic based designing of potential immunogenic novel mRNA and peptide-based prophylactic vaccines against H5N1 and H7N9 avian influenza viruses

, , , , , , , & show all
Pages 3641-3658 | Received 31 Oct 2022, Accepted 10 May 2023, Published online: 24 May 2023

References

  • Aamir, M., Singh, V. K., Dubey, M. K., Meena, M., Kashyap, S. P., Katari, S. K., Upadhyay, R. S., Umamaheswari, A., & Singh, S. (2018). In silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Frontiers in Pharmacology, 9, 1038. https://doi.org/10.3389/fphar.2018.01038
  • Absher, M., & Stinebring, W. R. (1969). Toxic properties of a synthetic double-stranded RNA: Endotoxin-like properties of poly I. Poly C, an interferon stimulator. Nature, 223(5207), 715–717. https://doi.org/10.1038/223715a0
  • Ahammad, I., Sarker, M. R. I., Khan, A. M., Islam, S., & Hossain, M. (2020). Virtual screening to identify novel inhibitors of Pan ERBB family of proteins from natural products with known anti-tumorigenic properties. International Journal of Peptide Research and Therapeutics, 26(4), 1923–1938. https://doi.org/10.1007/s10989-019-09992-3
  • Ahmad, T. A., Eweida, A. E., & Sheweita, S. A. (2016). B-cell epitope mapping for the design of vaccines and effective diagnostics. Trials in Vaccinology, 5, 71–83. https://doi.org/10.1016/j.trivac.2016.04.003
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Arya, S., Lin, Q., Zhou, N., Gao, X., & Huang, J.-D. (2020). Strong immune responses induced by direct local injections of modified mRNA-lipid nanocomplexes. Molecular Therapy. Nucleic Acids, 19, 1098–1109. https://doi.org/10.1016/j.omtn.2019.12.044
  • Asquith, B., & McLean, A. R. (2007). In vivo CD8+ T cell control of immunodeficiency virus infection in humans and macaques. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6365–6370. https://doi.org/10.1073/pnas.0700666104
  • Batista, F. D., Iber, D., & Neuberger, M. S. (2001). B cells acquire antigen from target cells after synapse formation. Nature, 411(6836), 489–494. https://doi.org/10.1038/35078099
  • Bogner, P., Capua, I., Lipman, D. J., Cox, N. J., & others . (2006). A global initiative on sharing avian flu data. Nature, 442(7106), 981–981. https://doi.org/10.1038/442981a
  • Buchan, D. W., & Jones, D. T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Research, 47(W1), W402–W407. https://doi.org/10.1093/nar/gkz297
  • Caux, C., Massacrier, C., Vanbervliet, B., Dubois, B., Van Kooten, C., Durand, I., & Banchereau, J. (1994). Activation of human dendritic cells through CD40 cross-linking. The Journal of Experimental Medicine, 180(4), 1263–1272. https://doi.org/10.1084/jem.180.4.1263
  • Cerino, A., & Mondelli, M. (1991). Identification of an immunodominant B cell epitope on the hepatitis C virus nonstructural region defined by human monoclonal antibodies. The Journal of Immunology, 147(8), 2692–2696. https://doi.org/10.4049/jimmunol.147.8.2692
  • Chen, J., Liu, H., Yang, J., & Chou, K.-C. (2007). Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids, 33(3), 423–428. https://doi.org/10.1007/s00726-006-0485-9
  • Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Choudhury, A., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing AbhiSCoVac-A single potential vaccine for all ‘corona culprits’: Immunoinformatics and immune simulation approaches. Journal of Molecular Liquids, 351, 118633. https://doi.org/10.1016/j.molliq.2022.118633
  • Das, B. S., Das, N. C., Swain, S. S., Mukherjee, S., & Bhattacharya, D. (2022). Andrographolide induces anti-SARS-CoV-2 response through host-directed mechanism: an in silico study. Future Virology, 17(9), 651–673. https://doi.org/10.2217/fvl-2021-0171
  • Das, N. C., Labala, R. K., Patra, R., Chattoraj, A., & Mukherjee, S. (2022). In silico identification of new anti-SARS-CoV-2 agents from bioactive phytocompounds targeting the viral spike glycoprotein and human TLR4. Letters in Drug Design & Discovery, 19(3), 175–191. https://doi.org/10.2174/1570180818666210901125519
  • Das, N. C., Patra, R., Gupta, P. S. S., Ghosh, P., Bhattacharya, M., Rana, M. K., & Mukherjee, S. (2021). Designing of a novel multi-epitope peptide based vaccine against Brugia malayi: An in silico approach. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 87, 104633. https://doi.org/10.1016/j.meegid.2020.104633
  • Das, N. C., Ray, A. S., Bayry, J., & Mukherjeee, S. (2021). Therapeutic efficacy of anti-bestrophin antibodies against experimental filariasis: Immunological, immune-informatics and immune simulation investigations. Antibodies, 10(2), 14. https://doi.org/10.3390/antib10020014
  • Do, R. K., Hatada, E., Lee, H., Tourigny, M. R., Hilbert, D., & Chen-Kiang, S. (2000). Attenuation of apoptosis underlies B lymphocyte stimulator enhancement of humoral immune response. The Journal of Experimental Medicine, 192(7), 953–964. https://doi.org/10.1084/jem.192.7.953
  • Dörner, T., & Radbruch, A. (2007). Antibodies and B cell memory in viral immunity. Immunity, 27(3), 384–392. https://doi.org/10.1016/j.immuni.2007.09.002
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 1–7. https://doi.org/10.1186/1471-2105-8-4
  • Dym, O., Eisenberg, D., & Yeates, T. (2012). Detection of errors in protein models. International Tables for Crystallography, 21(3), 677–683.
  • Elango, N., Elango, S., Shivshankar, P., & Katz, M. S. (2005). Optimized transfection of mRNA transcribed from ad (A/T) 100 tail-containing vector. Biochemical and Biophysical Research Communications, 330(3), 958–966. https://doi.org/10.1016/j.bbrc.2005.03.067
  • EL‐Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B‐cell epitopes using string kernels. Journal of Molecular Recognition: JMR, 21(4), 243–255. https://doi.org/10.1002/jmr.893
  • Espeseth, A. S., Cejas, P. J., Citron, M. P., Wang, D., DiStefano, D. J., Callahan, C., Donnell, G. O., Galli, J. D., Swoyer, R., Touch, S., Wen, Z., Antonello, J., Zhang, L., Flynn, J. A., Cox, K. S., Freed, D. C., Vora, K. A., Bahl, K., Latham, A. H., … Bett, A. J. (2020). Modified mRNA/lipid nanoparticle-based vaccines expressing respiratory syncytial virus F protein variants are immunogenic and protective in rodent models of RSV infection. NPJ Vaccines, 5(1), 1–14. https://doi.org/10.1038/s41541-020-0163-z
  • Field, A., Tytell, A., Lampson, G., & Hilleman, M. (1967). Inducers of interferon and host resistance. II. Multistranded synthetic polynucleotide complexes. Proceedings of the National Academy of Sciences of the United States of America, 58(3), 1004–1010. https://doi.org/10.1073/pnas.58.3.1004
  • Fields Virology FE. (2001). Fields virology FE. Lippincott Williams & Wilkins Publishers.
  • Fineberg, H. V. (2014). Pandemic preparedness and response—lessons from the H1N1 influenza of 2009. The New England Journal of Medicine, 370(14), 1335–1342. https://doi.org/10.1056/NEJMra1208802
  • Fry, A. M., Zhong, W., & Gubareva, L. V. (2015). Advancing treatment options for influenza: Challenges with the human influenza challenge. Oxford University Press.
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 1–12. https://doi.org/10.1155/2018/3502514
  • Gallie, D. (1991). The cap and poly (A) tail function synergistically to regulate mRNA translational efficiency. Genes & Development, 5(11), 2108–2116. https://doi.org/10.1101/gad.5.11.2108
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook, 571–607. Humana Press.
  • Geissler, M., Gesien, A., Tokushige, K., & Wands, J. R. (1997). Enhancement of cellular and humoral immune responses to hepatitis C virus core protein using DNA-based vaccines augmented with cytokine-expressing plasmids. The Journal of Immunology, 158(3), 1231–1237. https://doi.org/10.4049/jimmunol.158.3.1231
  • George, T. K., Tomy, A., & Jisha, M. S. (2020). Molecular docking study of bioactive compounds of Withania somnifera extract against topoisomerase IV type B. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 90(2), 381–390. https://doi.org/10.1007/s40011-019-01110-z
  • Ghafoor, D., Kousar, A., Ahmed, W., Khan, S., Ullah, Z., Ullah, N., Khan, S., Ahmed, S., Khan, Z., & Riaz, R. (2021). Computational vaccinology guided design of multi-epitopes subunit vaccine designing against Hantaan virus and its validation through immune simulations. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 93, 104950. https://doi.org/10.1016/j.meegid.2021.104950
  • Gorai, S., Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 98, 105237. https://doi.org/10.1016/j.meegid.2022.105237
  • Goulder, P. J., & Watkins, D. I. (2004). HIV and SIV CTL escape: Implications for vaccine design. Nature Reviews. Immunology, 4(8), 630–640. https://doi.org/10.1038/nri1417
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Consortium, O. S. D. D., & Raghava, G. P., Open Source Drug Discovery Consortium. (2013). In silico approach for predicting toxicity of peptides and proteins. PloS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 48, 83–94. https://doi.org/10.1016/j.meegid.2016.12.010
  • Hause, B. M., Collin, E. A., Liu, R., Huang, B., Sheng, Z., Lu, W., Wang, D., Nelson, E. A., & Li, F. (2014). Characterization of a novel influenza virus in cattle and Swine: Proposal for a new genus in the Orthomyxoviridae family. mBio, 5(2), e00031–00014. https://doi.org/10.1128/mBio.00031-14
  • Ho, B. K., Thomas, A., & Brasseur, R. (2003). Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix. Protein Science: A Publication of the Protein Society, 12(11), 2508–2522. https://doi.org/10.1110/ps.03235203
  • Holling, T. M., Schooten, E., & van Den Elsen, P. J. (2004). Function and regulation of MHC class II molecules in T-lymphocytes: Of mice and men. Human Immunology, 65(4), 282–290. https://doi.org/10.1016/j.humimm.2004.01.005
  • Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins.
  • Holtkamp, S., Kreiter, S., Selmi, A., Simon, P., Koslowski, M., Huber, C., Türeci, O., & Sahin, U. (2006). Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood, 108(13), 4009–4017. https://doi.org/10.1182/blood-2006-04-015024
  • Isaacs, A., Cox, R., & Rotem, Z. (1963). Foreign nucleic acids as the stimulus to make interferon. The Lancet, 282(7299), 113–116. https://doi.org/10.1016/S0140-6736(63)92585-6
  • Iwasaki, A., Stiernholm, B., Chan, A. K., Berinstein, N. L., & Barber, B. H. (1997). Enhanced CTL responses mediated by plasmid DNA immunogens encoding costimulatory molecules and cytokines. The Journal of Immunology, 158(10), 4591–4601. https://doi.org/10.4049/jimmunol.158.10.4591
  • Jain, S., Venkataraman, A., Wechsler, M. E., & Peppas, N. A. (2021). Messenger RNA-based vaccines: Past, present, and future directions in the context of the COVID-19 pandemic. Advanced Drug Delivery Reviews, 179, 114000. https://doi.org/10.1016/j.addr.2021.114000
  • Janeway, Jr, C. A., Travers, P., Walport, M., & Shlomchik, M. J. (2001). B-cell activation by armed helper T cells. In Immunobiology: The immune system in health and disease (5th ed.). Garland Science.
  • Kalia, V., Sarkar, S., Gourley, T. S., Rouse, B. T., & Ahmed, R. (2006). Differentiation of memory B and T cells. Current Opinion in Immunology, 18(3), 255–264. https://doi.org/10.1016/j.coi.2006.03.020
  • Kaliamurthi, S., Selvaraj, G., Chinnasamy, S., Wang, Q., Nangraj, A. S., Cho, W. C., Gu, K., & Wei, D.-Q. (2019). Exploring the papillomaviral proteome to identify potential candidates for a chimeric vaccine against cervix papilloma using immunomics and computational structural vaccinology. Viruses, 11(1), 63. https://doi.org/10.3390/v11010063
  • Ke, C., Mok, C. K. P., Zhu, W., Zhou, H., He, J., Guan, W., Wu, J., Song, W., Wang, D., Liu, J., Lin, Q., Chu, D. K. W., Yang, L., Zhong, N., Yang, Z., Shu, Y., & Peiris, J. S. M. (2017). Human infection with highly pathogenic avian influenza A (H7N9) virus, China. Emerging Infectious Diseases, 23(8), 1332–1340. https://doi.org/10.3201/eid2308.170600
  • Khan, A., Junaid, M., Li, C.-D., Saleem, S., Humayun, F., Shamas, S., Ali, S. S., Babar, Z., Wei, D.-Q., & Ashfaq-Ur-Rehman. (2019). Dynamics insights into the gain of flexibility by Helix-12 in ESR1 as a mechanism of resistance to drugs in breast cancer cell lines. Frontiers in Molecular Biosciences, 6, 159. https://doi.org/10.3389/fmolb.2019.00159
  • Khan, M. T., Khan, A., Rehman, A. U., Wang, Y., Akhtar, K., Malik, S. I., & Wei, D.-Q. (2019). Structural and free energy landscape of novel mutations in ribosomal protein S1 (rpsA) associated with pyrazinamide resistance. Scientific Reports, 9(1), 1–12. https://doi.org/10.1038/s41598-019-44013-9
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2021). Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure & Dynamics, 39(8), 2679–2692. https://doi.org/10.1080/07391102.2020.1753577
  • Khan, S., Khan, A., Rehman, A. U., Ahmad, I., Ullah, S., Khan, A. A., Ali, S. S., Afridi, S. G., & Wei, D.-Q. (2019). Immunoinformatics and structural vaccinology driven prediction of multi-epitope vaccine against Mayaro virus and validation through in-silico expression. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 73, 390–400. https://doi.org/10.1016/j.meegid.2019.06.006
  • Khan, T., Khan, A., Ansari, J. K., Najmi, M. H., Wei, D.-Q., Muhammad, K., & Waheed, Y. (2022). Potential immunogenic activity of computationally designed mRNA-and peptide-based prophylactic vaccines against MERS, SARS-CoV, and SARS-CoV-2: A reverse vaccinology approach. Molecules, 27(7), 2375. https://doi.org/10.3390/molecules27072375
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-08842-w
  • Koprowski, H., & Weiner, D. B. (2012). DNA vaccination/genetic vaccination (vol. 226). Springer Science & Business Media.
  • Kou, Y., Xu, Y., Zhao, Z., Liu, J., Wu, Y., You, Q., Wang, L., Gao, F., Cai, L., & Jiang, C. (2017). Tissue plasminogen activator (tPA) signal sequence enhances immunogenicity of MVA-based vaccine against tuberculosis. Immunology Letters, 190, 51–57. https://doi.org/10.1016/j.imlet.2017.07.007
  • Kozak, M. (1986). Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 44(2), 283–292. https://doi.org/10.1016/0092-8674(86)90762-2
  • Kozak, M. (1989). Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Molecular and Cellular Biology, 9(11), 5134–5142. https://doi.org/10.1128/mcb.9.11.5134-5142.1989
  • Kozakov, D., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Vajda, S. (2013). How good is automated protein docking? Proteins, 81(12), 2159–2166. https://doi.org/10.1002/prot.24403
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein–protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kreiter, S., Selmi, A., Diken, M., Sebastian, M., Osterloh, P., Schild, H., Huber, C., Tureci, O., & Sahin, U. (2008). Increased antigen presentation efficiency by coupling antigens to MHC class I trafficking signals. Journal of Immunology (Baltimore, MD: 1950), 180(1), 309–318. https://doi.org/10.4049/jimmunol.180.1.309
  • Lai, S., Qin, Y., Cowling, B. J., Ren, X., Wardrop, N. A., Gilbert, M., Tsang, T. K., Wu, P., Feng, L., Jiang, H., Peng, Z., Zheng, J., Liao, Q., Li, S., Horby, P. W., Farrar, J. J., Gao, G. F., Tatem, A. J., & Yu, H. (2016). Global epidemiology of avian influenza A H5N1 virus infection in humans, 1997–2015: A systematic review of individual case data. The Lancet. Infectious Diseases, 16(7), e108–e118. https://doi.org/10.1016/S1473-3099(16)00153-5
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8(1), 12. https://doi.org/10.1186/1471-2105-8-424
  • Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein Science: A Publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Lechmann, M., Ihlenfeldt, H. G., Braunschweiger, I., Giers, G., Jung, G., Matz, B., Kaiser, R., Sauerbruch, T., & Spengler, U. (1996). T‐and B‐cell responses to different hepatitis C virus antigens in patients with chronic hepatitis C infection and in healthy anti‐hepatitis C virus—positive blood donors without viremi. Hepatology (Baltimore, MD), 24(4), 790–795. https://doi.org/10.1002/hep.510240406
  • Lehtinen, M., Hibma, M. H., Stellato, G., Kuoppala, T., & Paavonen, J. (1995). Human T helper cell epitopes overlap B cell and putative cytotoxic T cell epitopes in the E2 protein of human papillomavirus type 16. Biochemical and Biophysical Research Communications, 209(2), 541–546. https://doi.org/10.1006/bbrc.1995.1535
  • Leslie, A. J., Pfafferott, K. J., Chetty, P., Draenert, R., Addo, M. M., Feeney, M., Tang, Y., Holmes, E. C., Allen, T., Prado, J. G., Altfeld, M., Brander, C., Dixon, C., Ramduth, D., Jeena, P., Thomas, S. A., St John, A., Roach, T. A., Kupfer, B., … Goulder, P. J. R. (2004). HIV evolution: CTL escape mutation and reversion after transmission. Nature Medicine, 10(3), 282–289. https://doi.org/10.1038/nm992
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Liu, Q. (2005). Comparative analysis of base biases around the stop codons in six eukaryotes. Bio Systems, 81(3), 281–289. https://doi.org/10.1016/j.biosystems.2005.05.005
  • Livingston, B., Crimi, C., Newman, M., Higashimoto, Y., Appella, E., Sidney, J., & Sette, A. (2002). A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. Journal of Immunology (Baltimore, MD: 1950), 168(11), 5499–5506. https://doi.org/10.4049/jimmunol.168.11.5499
  • Loudon, P. T., Yager, E. J., Lynch, D. T., Narendran, A., Stagnar, C., Franchini, A. M., Fuller, J. T., White, P. A., Nyuandi, J., Wiley, C. A., Murphey-Corb, M., & Fuller, D. H. (2010). GM-CSF increases mucosal and systemic immunogenicity of an H1N1 influenza DNA vaccine administered into the epidermis of non-human primates. PloS One, 5(6), e11021. https://doi.org/10.1371/journal.pone.0011021
  • Lu, L., Xiong, W., Mu, J., Zhang, Q., Zhang, H., Zou, L., Li, W., He, L., Sander, J. W., & Zhou, D. (2021). The potential neurological effect of the COVID‐19 vaccines: a review. Acta Neurologica Scandinavica, 144(1), 3–12. https://doi.org/10.1111/ane.13417
  • Maini, M. K., Boni, C., Lee, C. K., Larrubia, J. R., Reignat, S., Ogg, G. S., King, A. S., Herberg, J., Gilson, R., Alisa, A., Williams, R., Vergani, D., Naoumov, N. V., Ferrari, C., & Bertoletti, A. (2000). The role of virus-specific CD8+ cells in liver damage and viral control during persistent hepatitis B virus infection. The Journal of Experimental Medicine, 191(8), 1269–1280. https://doi.org/10.1084/jem.191.8.1269
  • María, R., Arturo, C., Alicia, J. A., Paulina, M., & Gerardo, A. O. (2017). The impact of bioinformatics on vaccine design and development. Vaccines, 2, 3–6.
  • Maruggi, G., Zhang, C., Li, J., Ulmer, J. B., & Yu, D. (2019). mRNA as a transformative technology for vaccine development to control infectious diseases. Molecular Therapy: The Journal of the American Society of Gene Therapy, 27(4), 757–772. https://doi.org/10.1016/j.ymthe.2019.01.020
  • Maupetit, J., Tuffery, P., & Derreumaux, P. (2007). A coarse‐grained protein force field for folding and structure prediction. Proteins, 69(2), 394–408. https://doi.org/10.1002/prot.21505
  • McKee, A. S., & Marrack, P. (2017). Old and new adjuvants. Current Opinion in Immunology, 47, 44–51. https://doi.org/10.1016/j.coi.2017.06.005
  • Mockey, M., Gonçalves, C., Dupuy, F. P., Lemoine, F. M., Pichon, C., & Midoux, P. (2006). mRNA transfection of dendritic cells: Synergistic effect of ARCA mRNA capping with Poly (A) chains in cis and in trans for a high protein expression level. Biochemical and Biophysical Research Communications, 340(4), 1062–1068. https://doi.org/10.1016/j.bbrc.2005.12.105
  • Munroe, D., & Jacobson, A. (1990). mRNA poly (A) tail, a 3'enhancer of translational initiation. Molecular and Cellular Biology, 10(7), 3441–3455. https://doi.org/10.1128/mcb.10.7.3441-3455.1990
  • Nielsen, M., & Lund, O. (2009). NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 10(1), 1–10. https://doi.org/10.1186/1471-2105-10-296
  • Oferkin, I. V., Katkova, E. V., Sulimov, A. V., Kutov, D. C., Sobolev, S. I., Voevodin, V. V., & Sulimov, V. B. (2015). Evaluation of docking target functions by the comprehensive investigation of protein-ligand energy minima. Advances in Bioinformatics, 2015, 1–12. https://doi.org/10.1155/2015/126858
  • Pandey, R. K., Bhatt, T. K., & Prajapati, V. K. (2018). Novel immunoinformatics approaches to design multi-epitope subunit vaccine for malaria by investigating anopheles salivary protein. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-19456-1
  • Pardi, N., Hogan, M. J., Pelc, R. S., Muramatsu, H., Andersen, H., DeMaso, C. R., Dowd, K. A., Sutherland, L. L., Scearce, R. M., Parks, R., Wagner, W., Granados, A., Greenhouse, J., Walker, M., Willis, E., Yu, J.-S., McGee, C. E., Sempowski, G. D., Mui, B. L., … Weissman, D. (2017). Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 543(7644), 248–251. https://doi.org/10.1038/nature21428
  • Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B. L., Tam, Y. K., Madden, T. D., Hope, M. J., & Weissman, D. (2015). Expression kinetics of nucleoside-modified mRNA delivered in lipid nanoparticles to mice by various routes. Journal of Controlled Release: Official Journal of the Controlled Release Society, 217, 345–351. https://doi.org/10.1016/j.jconrel.2015.08.007
  • Peiris, J. M., De Jong, M. D., & Guan, Y. (2007). Avian influenza virus (H5N1): A threat to human health. Clinical Microbiology Reviews, 20(2), 243–267. https://doi.org/10.1128/CMR.00037-06
  • Plotkin, S. A. (2009). Vaccines: The fourth century. Clinical and Vaccine Immunology: CVI, 16(12), 1709–1719. https://doi.org/10.1128/CVI.00290-09
  • Pulendran, B., & Ahmed, R. (2006). Translating innate immunity into immunological memory: Implications for vaccine development. Cell, 124(4), 849–863. https://doi.org/10.1016/j.cell.2006.02.019
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rappuoli, R. (2001). Reverse vaccinology, a genome-based approach to vaccine development. Vaccine, 19(17–19), 2688–2691. https://doi.org/10.1016/s0264-410x(00)00554-5
  • Roe, D. R., & Cheatham, I. T. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Rosa, S. S., Prazeres, D. M., Azevedo, A. M., & Marques, M. P. (2021). mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 39(16), 2190–2200. https://doi.org/10.1016/j.vaccine.2021.03.038
  • Rosendahl Huber, S., van Beek, J., de Jonge, J., Luytjes, W., & van Baarle, D. (2014). T cell responses to viral infections–opportunities for peptide vaccination. Frontiers in Immunology, 5, 171. https://doi.org/10.3389/fimmu.2014.00171
  • Saha, S., & Raghava, G. P. S. (2006). AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Research, 34(Web Server issue), W202–W209. https://doi.org/10.1093/nar/gkl343
  • Saha, S., & Raghava, G. P. S. (2006). Prediction of continuous B‐cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T-and B-cell epitope prediction. Journal of Immunology Research, 2017, 1–14. https://doi.org/10.1155/2017/2680160
  • Scheel, B., Teufel, R., Probst, J., Carralot, J.-P., Geginat, J., Radsak, M., Jarrossay, D., Wagner, H., Jung, G., Rammensee, H.-G., Hoerr, I., & Pascolo, S. (2005). Toll‐like receptor‐dependent activation of several human blood cell types by protamine‐condensed mRNA. European Journal of Immunology, 35(5), 1557–1566. https://doi.org/10.1002/eji.200425656
  • Schlake, T., Thess, A., Fotin-Mleczek, M., & Kallen, K.-J. (2012). Developing mRNA-vaccine technologies. RNA Biology, 9(11), 1319–1330. https://doi.org/10.4161/rna.22269
  • Schoenmaker, L., Witzigmann, D., Kulkarni, J. A., Verbeke, R., Kersten, G., Jiskoot, W., & Crommelin, D. J. (2021). mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. International Journal of Pharmaceutics, 601, 120586. https://doi.org/10.1016/j.ijpharm.2021.120586
  • Shao, W., Li, X., Goraya, M. U., Wang, S., & Chen, J.-L. (2017). Evolution of influenza a virus by mutation and re-assortment. International Journal of Molecular Sciences, 18(8), 1650. https://doi.org/10.3390/ijms18081650
  • Suleman, M., Rashid, F., Ali, S., Sher, H., Luo, S., Xie, L., & Xie, Z. (2022). Immunoinformatic-based design of immune-boosting multiepitope subunit vaccines against monkeypox virus and validation through molecular dynamics and immune simulation. Frontiers in Immunology, 13, 940756. https://doi.org/10.3389/fimmu.2022.1042997
  • Suschak, J. J., Williams, J. A., & Schmaljohn, C. S. (2017). Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Human Vaccines & Immunotherapeutics, 13(12), 2837–2848. https://doi.org/10.1080/21645515.2017.1330236
  • Tahir Ul Qamar, M., Saleem, S., Ashfaq, U. A., Bari, A., Anwar, F., & Alqahtani, S. (2019). Epitope‐based peptide vaccine design and target site depiction against Middle East Respiratory Syndrome Coronavirus: an immune-informatics study. Journal of Translational Medicine, 17(1), 14. https://doi.org/10.1186/s12967-019-2116-8
  • Tahir, R. A., Wu, H., Rizwan, M. A., Jafar, T. H., Saleem, S., & Sehgal, S. A. (2018). Immunoinformatics and molecular docking studies reveal potential epitope-based peptide vaccine against DENV-NS3 protein. Journal of Theoretical Biology, 459, 162–170. https://doi.org/10.1016/j.jtbi.2018.10.005
  • Tam, H. H., Melo, M. B., Kang, M., Pelet, J. M., Ruda, V. M., Foley, M. H., Hu, J. K., Kumari, S., Crampton, J., Baldeon, A. D., Sanders, R. W., Moore, J. P., Crotty, S., Langer, R., Anderson, D. G., Chakraborty, A. K., & Irvine, D. J. (2016). Sustained antigen availability during germinal center initiation enhances antibody responses to vaccination. Proceedings of the National Academy of Sciences of the United States of America, 113(43), E6639–E6648. https://doi.org/10.1073/pnas.1606050113
  • Tandrup Schmidt, S., Foged, C., Smith Korsholm, K., Rades, T., & Christensen, D. (2016). Liposome-based adjuvants for subunit vaccines: Formulation strategies for subunit antigens and immunostimulators. Pharmaceutics, 8(1), 7. https://doi.org/10.3390/pharmaceutics8010007
  • Taubenberger, J. K., & Kash, J. C. (2010). Influenza virus evolution, host adaptation, and pandemic formation. Cell Host & Microbe, 7(6), 440–451. https://doi.org/10.1016/j.chom.2010.05.009
  • Tcherepanova, I. Y., Adams, M. D., Feng, X., Hinohara, A., Horvatinovich, J., Calderhead, D., Healey, D., & Nicolette, C. A. (2008). Ectopic expression of a truncated CD40L protein from synthetic post-transcriptionally capped RNA in dendritic cells induces high levels of IL-12 secretion. BMC Molecular Biology, 9(1), 90. https://doi.org/10.1186/1471-2199-9-90
  • Uddin, M. N., & Roni, M. A. (2021). Challenges of storage and stability of mRNA-based COVID-19 vaccines. Vaccines, 9(9), 1033. https://doi.org/10.3390/vaccines9091033
  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Wallner, B., & Elofsson, A. (2003). Can correct protein models be identified? Protein Science: A Publication of the Protein Society, 12(5), 1073–1086. https://doi.org/10.1110/ps.0236803
  • Wang, Z., Day, N., Trifillis, P., & Kiledjian, M. (1999). An mRNA stability complex functions with poly (A)-binding protein to stabilize mRNA in vitro. Molecular and Cellular Biology, 19(7), 4552–4560. https://doi.org/10.1128/MCB.19.7.4552
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Wilkie, G. S., Dickson, K. S., & Gray, N. K. (2003). Regulation of mRNA translation by 5′-and 3′-UTR-binding factors. Trends in Biochemical Sciences, 28(4), 182–188. https://doi.org/10.1016/S0968-0004(03)00051-3
  • World Health Organization. (2020). Human infection with avian influenza A (H5) viruses. Avian Influenza Weekly Update number, 89.
  • Xiang, Z., & Ertl, H. C. (1995). Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity, 2(2), 129–135. https://doi.org/10.1016/s1074-7613(95)80001-8
  • Yadav, S., Pandey, S. K., Singh, V. K., Goel, Y., Kumar, A., & Singh, S. M. (2017). Molecular docking studies of 3-bromopyruvate and its derivatives to metabolic regulatory enzymes: Implication in designing of novel anticancer therapeutic strategies. PloS One, 12(5), e0176403. https://doi.org/10.1371/journal.pone.0176403
  • Yang, D., Shao, J., Hu, R., Chen, H., Xie, P., & Liu, C. (2017). Angiotensin II promotes the anticoagulant effects of rivaroxaban via angiotensin type 2 receptor signaling in mice. Scientific Reports, 7(1), 369. https://doi.org/10.1038/s41598-017-00473-5
  • Zeb, A., Ali, S. S., Azad, A. K., Safdar, M., Anwar, Z., Suleman, M., Nizam-Uddin, N., Khan, A., & Wei, D.-Q. (2021). Genome-wide screening of vaccine targets prioritization and reverse vaccinology aided design of peptides vaccine to enforce humoral immune response against Campylobacter jejuni. Computers in Biology and Medicine, 133, 104412. https://doi.org/10.1016/j.compbiomed.2021.104412
  • Zhao, Y., Moon, E., Carpenito, C., Paulos, C. M., Liu, X., Brennan, A. L., Chew, A., Carroll, R. G., Scholler, J., Levine, B. L., Albelda, S. M., & June, C. H. (2010). Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumorautologous RNA CAR T cells mediate tumor regression. Cancer Research, 70(22), 9053–9061. https://doi.org/10.1158/0008-5472.CAN-10-2880

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.