117
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, NMR kinetics and dynamic structure of a 17-mer heptaloop RNA hairpin carrying a 3-N-methyluridine nucleotide residue in the loop region

, , &
Pages 3659-3681 | Received 21 Nov 2022, Accepted 10 May 2023, Published online: 06 Jun 2023

References

  • Altona, C., & Sundaralingam, M. (1972). Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. Journal of the American Chemical Society, 94(23), 8205–8212. https://doi.org/10.1021/ja00778a043
  • Andac, C. A., Miandji, A. M., Hornemann, U., & Noyanalpan, N. (2011). Use of the parmbsc0 force field and trajectory analysis to study the binding of netropsin to the DNA fragment (5’CCAATTGG)2 in the presence of excess NaCl salt in aqueous solution. International Journal of Biological Macromolecules, 48(4), 531–539. https://doi.org/10.1016/j.ijbiomac.2011.02.004
  • Anthis, N. J., & Clore, G. M. (2015). Visualizing transient dark states by NMR Spectroscopy. Quarterly Reviews of Biophysics, 48(1), 35–116. https://doi.org/10.1017/S0033583514000122
  • Auxilien, S., Crain, P. F., Trewyn, R. W., & Grosjean, H. (1996). Mechanism, specificity and general properties of the yeast enzyme catalysing the formation of inosine 34 in the anticodon of transfer RNA. Journal of Molecular Biology, 262(4), 437–458. https://doi.org/10.1006/jmbi.1996.0527
  • Bain, A. D. (2003). Chemical exchange in NMR. Progress in Nuclear Magnetic Resonance Spectroscopy, 43(3-4), 63–103. https://doi.org/10.1016/j.pnmrs.2003.08.001
  • Balasubramaian, R., & Seetharamulu, P. (1983). A conformational rationale for the wobble behaviour on the first base of the anticodon triplet in tRNA. Journal of Theoretical Biology, 101(1), 77–86. https://doi.org/10.1016/0022-5193(83)90273-4
  • Barraud, P., Gato, A., Heiss, M., Catala, M., Kellner, S., & Tisné, C. (2019). Time-resolved NMR monitoring of tRNA maturation. Nature Communications, 10(1), 3373. https://doi.org/10.1038/s41467-019-11356-w
  • Basturea, G. N., & Deutscher, M. P. (2007). Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA (New York, N.Y.), 13(11), 1969–1976. https://doi.org/10.1261/rna.700507
  • Basturea, G. N., Rudd, K. E., & Deutscher, M. P. (2006). Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA (New York, N.Y.), 12(3), 426–434. https://doi.org/10.1261/rna.2283106
  • Bergonzo, C., & Cheatham, T. E. III, (2015). Improved force field parameters lead to a better description of RNA structure. Journal of Chemical Theory and Computation, 11(9), 3969–3972. https://doi.org/10.1021/acs.jctc.5b00444
  • Bergonzo, C., Henriksen, N. M., Roe, D. R., Swails, J. M., Roitberg, A. E., & Cheatham, T. E. III, (2014). Multidimensional replica exchange molecular dynamics yields a converged ensemble of an RNA Tetranucleotide. Journal of Chemical Theory and Computation, 10(1), 492–499. https://doi.org/10.1021/ct400862k
  • Betz, R. M., & Walker, R. C. (2015). Paramfit: Automated optimization of force field parameters for molecular dynamics simulations. Journal of Computational Chemistry, 36(2), 79–87. https://doi.org/10.1002/jcc.23775
  • Boccaletto, P., Machnicka, M. A., Purta, E., Piatkowski, P., Baginski, B., Wirecki, T. K., de Crécy-Lagard, V., Ross, R., Limbach, P. A., Kotter, A., Helm, M., & Bujnicki, J. M. (2018). MODOMICS: A database of RNA modification pathways. 2017 Update. Nucleic Acids Research, 46(D1), D303–D307. https://doi.org/10.1093/nar/gkx1030
  • Boswell, Z. K., & Latham, M. P. (2019). Methyl-Based NMR spectroscopy methods for uncovering structural dynamics in large proteins and protein complexes. Biochemistry, 58(3), 144–155. https://doi.org/10.1021/acs.biochem.8b00953
  • Byrne, R. T., Konevega, A. L., Rodnina, M. V., & Antson, A. A. (2010). The crystal structure of unmodified tRNAPhe from Escherichia coli. Nucleic Acids Research, 38(12), 4154–4162. https://doi.org/10.1093/nar/gkq133
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Ghoreishi, D., Gilson, M. K., Gohlke, H., Goetz, A. W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T., … Kollman, P. A. (2020). AMBER. University of California.
  • Claesson, C., Lustig, F., Boren, T., Simonsson, C., Barciszewska, M., & Lagerkvist, U. (1995). Glycine codon discrimination and the nucleotide in position 32 of the anticodon loop. Journal of Molecular Biology, 247(2), 191–196. https://doi.org/10.1006/jmbi.1994.0132
  • Connolly, M. L. (1983). Analytical molecular surface calculation. Journal of Applied Crystallography, 16(5), 548–558. https://doi.org/10.1107/S0021889883010985
  • Conte, M. R., Conn, G. L., Brown, T., & Lane, A. N. (1997). Conformational properties and thermodynamics of the RNA duplex r(CGCAAAUUUGCG)2: Comparison with the DNA analogue d(CGCAAATTTGCG)2. Nucleic Acids Research, 25(13), 2627–2634. https://doi.org/10.1093/nar/25.13.2627
  • Crick, F. H. (1966). Codon-anticodon pairing: The wobble hypothesis. Journal of Molecular Biology, 19(2), 548–555. https://doi.org/10.1016/s0022-2836(66)80022-0
  • Curran, C. F. (1998). Chapter 27: Modified nucleosides in translation. In H. Grosjean & B. Benne (Eds.), Modification and editing of RNA (pp. 493–516). American Society for Microbiology Press. https://doi.org/10.1128/9781555818296.ch27
  • Damha, M. J., & Ogilvie, K. K. (1993). Protocols for oligonucleotides and analogs: Synthesis and properties. In S. Agrawal (Ed.), Methods in molecular biology (Vol. 20, pp. 81–114). Humana Press. https://doi.org/10.1385/0-89603-281-7:81
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N_log(N) method for Ewald sums in large systems. Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Deb, I., Sarzynska, J., Nilsson, L., & Lahiri, A. (2019). Structural stability of the anticodon stem loop domains of the unmodified yeast and Escherichia coli tRNAPhe: Differing views from different force fields. ACS Omega, 4(2), 3029–3044. https://doi.org/10.1021/acsomega.8b02383
  • Dupradeau, F.-Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., & Cieplak, P. (2010). The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Physical Chemistry Chemical Physics : PCCP, 12(28), 7821–7839. https://doi.org/10.1039/c0cp00111b
  • Elias, Y., & Huang, R. H. (2005). Biochemical and structural studies of A-to-I editing by tRNA: A34 deaminases at the wobble position of transfer RNA. Biochemistry, 44(36), 12057–12065. https://doi.org/10.1021/bi050499f
  • Ester, M., Kriegel, H., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd International Conference Knowledge Discovery and Data Mining (KDD-96), pp. 226–231. https://doi.org/10.5555/3001460.3001507
  • Fuller, W., & Hodgson, A. (1967). Conformation of the anticodon loop in tRNA. Nature, 215(5103), 817–821. https://doi.org/10.1038/215817a0
  • Gerber, A. P., & Keller, W. (1999). An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science (New York, N.Y.), 286(5442), 1146–1149. https://doi.org/10.1126/science.286.5442.1146
  • Gilbert, W. (1986). Origin of life—the RNA world. Nature, 319(6055), 618–618. https://doi.org/10.1038/319618a0
  • Gutell, R. R., Cannone, J. J., Konings, D., & Gautheret, D. (2000). Predicting U-turns in ribosomal RNA with comparative sequence analysis. Journal of Molecular Biology, 300(4), 791–803. https://doi.org/10.1006/jmbi.2000.3900
  • Haines, J. A., Reese, C. B., & Todd, L. (1964). The methylation of nucleosides and mononucleotides with diazomethane. Journal of the Chemical Society (Resumed), Part II, 1406–1412. https://doi.org/10.1039/jr9640001406
  • Hakimelahi, G. H., Proba, Z. A., & Ogilvie, K. K. (1982). New catalysts and procedures for the dimethoxytritylation and selective silylation of ribonucleosides. Canadian Journal of Chemistry, 60(9), 1106–1113. https://doi.org/10.1139/v82-165
  • Izadi, S., Anandakrishnan, R., & Onufriev, A. V. (2014). Building water models: A different approach. The Journal of Physical Chemistry Letters, 5(21), 3863–3871. https://doi.org/10.1021/jz501780a
  • Joyce, G. F. (2002). The antiquity of RNA-based evolution. Nature, 418(6894), 214–221. https://doi.org/10.1038/418214a
  • Joyce, G. F., & Szostak, J. W. (2018). Protocells and RNA self-replication. Cold Spring Harbor Perspectives in Biology, 10(9), a034801. https://doi.org/10.1101/cshperspect.a034801
  • Jukes, T. H. (1973). Possibilities for the evolution of the genetic code from a preceding form. Nature, 246(5427), 22–26. https://doi.org/10.1038/246022a0
  • Knapp, B., Ospina, L., & Deane, C. M. (2018). Avoiding false positive conclusions in molecular simulation: The importance of replicas. Journal of Chemical Theory and Computation, 14(12), 6127–6138. https://doi.org/10.1021/acs.jctc.8b00391
  • Lavery, R., Moakher, M., Maddocks, J. H., Petkeviciute, D., & Zakrzewska, K. (2009). Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Research, 37(17), 5917–5929. https://doi.org/10.1093/nar/gkp608
  • Ledoux, S., Olejniczak, M., & Uhlenbeck, O. C. (2009). A sequence element that tunes Escherichia coli tRNAAlaGGC to ensure accurate decoding. Nature Structural & Molecular Biology, 16(4), 359–364. https://doi.org/10.1038/nsmb.1581
  • Lu, X.-J., & Olson, W. K. (2003). 3DNA: A software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Research, 31(17), 5108–5121. https://doi.org/10.1093/nar/gkg680
  • Mikkelsen, N. E., Johansson, K., Virtanen, A., & Kirsebom, L. A. (2001). Aminoglycoside binding displaces a divalent metal ion in a tRNA-neomycin B complex. Nature Structural Biology, 8(6), 510–514. https://doi.org/10.1038/88569
  • Morgado, C. A., Jurečka, P., Svozil, D., Hobza, P., & Šponer, J. (2009). Balance of attraction and repulsion in nucleic-acid base stacking: CCSD(T)/complete-basis-set-limit calculations on uracil dimer and a comparison with the force-field description. Journal of Chemical Theory and Computation, 5(6), 1524–1544. https://doi.org/10.1021/ct9000125
  • Morgado, C. A., Jurečka, P., Svozil, D., Hobza, P., & Šponer, J. (2010). Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions. Physical Chemistry Chemical Physics : PCCP, 12(14), 3522–3534. https://doi.org/10.1039/B924461A
  • Murakami, H., Ohta, A., & Suga, H. (2009). Bases in the anticodon loop of tRNA(Ala)(GGC) prevent misreading. Nature Structural & Molecular Biology, 16(4), 353–358. https://doi.org/10.1038/nsmb.1580
  • Neidle, S. (Ed.). (2008). Principles of nucleic acid structure. Academic Press. https://doi.org/10.1016/B978-0-12-369507-9.X5001-8
  • Ogg, R. J., Kingsley, P. B., & Taylor, J. S. (1994). WET, a T1- and B1-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. Journal of Magnetic Resonance. Series B, 104(1), 1–10. https://doi.org/10.1006/jmrb.1994.1048
  • Olejniczak, M., & Uhlenbeck, O. C. (2006). tRNA residues that have coevolved with their anticodon to ensure uniform and accurate codon recognition. Biochimie, 88(8), 943–950. https://doi.org/10.1016/j.biochi.2006.06.005
  • Olson, W. K., & Sussman, J. L. (1982). How flexible is the furanose ring? A comparison of experimental and theoretical studies. Journal of the American Chemical Society, 104(1), 270–278. https://doi.org/10.1021/ja00365a049
  • Orgel, L. E. (1989). Was RNA the first genetic polymer? Evolutionary Tinkering in Gene Expression, 169, 215–224. https://doi.org/10.1007/978-1-4684-5664-6_20
  • Palmer, A. G., Kroenke, C. D., & Loria, J.P. (2001). Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods in Enzymology, 339, 204–238. https://doi.org/10.1016/S0076-6879(01)39315-1
  • Pastor, R. W., Brooks, B. R., & Szabo, A. (1988). An analysis of the accuracy of Langevin and molecular dynamics algorithms. Molecular Physics, 65(6), 1409–1419. https://doi.org/10.1080/00268978800101881
  • Pernod, K., Schaeffer, L., Chicher, J., Hok, E., Rick, C., Geslain, R., Eriani, G., Westhof, E., Ryckelynck, M., & Martin, F. (2020). The nature of the purine at position 34 in tRNAs of 4-codon boxes is correlated with nucleotides at positions 32 and 38 to maintain decoding fidelity. Nucleic Acids Research, 48(11), 6170–6183. https://doi.org/10.1093/nar/gkaa221
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera–a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Preparation of Diazomethane. Aldrichimica Acta 1983; 16: NO.1.41. https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/187/633/acta-vol16.pdf
  • Quigley, G. J., & Rich, A. (1976). Structural domains of transfer RNA molecules. Science (New York, N.Y.), 194(4267), 796–806. https://doi.org/10.1126/science.790568
  • Robertson, M. P., & Joyce, G. F. (2012). The origins of the RNA world. Cold Spring Harbor Perspectives in Biology, 4(5), a003608–a003608. https://doi.org/10.1101/cshperspect.a003608
  • Roe, D. R., & Cheatham, T. E. III, (2018). Parallelization of CPPTRAJ enables large scale analysis of molecular dynamics trajectory data. Journal of Computational Chemistry, 39(25), 2110–2117. https://doi.org/10.1002/jcc.25382
  • Roe, D. R., Bergonzo, C., & Cheatham, T. E. III, (2014). Evaluation of enhanced sampling provided by accelerated molecular dynamics with Hamiltonian replica exchange methods. The Journal of Physical Chemistry B, 118(13), 3543–3552. https://doi.org/10.1021/jp4125099
  • Ruschak, A. M., & Kay, L. E. (2010). Methyl groups as probes of supra-molecular structure, dynamics and function. Journal of Biomolecular NMR, 46(1), 75–87. https://doi.org/10.1007/s10858-009-9376-1
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics. 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saint-Léger, A., Bello, C., Dans, P. D., Torres, A. G., Novoa, E. M., Camacho, N., Orozco, M., Kondrashov, F. A., & De Pouplana, L. R. (2016). Saturation of recognition elements blocks evolution of new tRNA identities. Science Advances, 2(4), e1501860. https://doi.org/10.1126/sciadv.1501860
  • Scaringe, S. A., Francklyn, C., & Usman, U. (1990). Chemical synthesis of biologically active oligonucleotides using beta-cyanoethyl protected ribonucleoside phosphoramidites. Nucleic Acids Research, 18(18), 5433–5441. https://doi.org/10.1093/nar/18.18.5433
  • Shao, J., Tanner, S. W., Thompson, N., & Cheatham, T. E. (2007). Clustering molecular dynamics trajectories: 1. Characterizing the performance of different clustering algorithms. Journal of Chemical Theory and Computation, 3(6), 2312–2334. https://doi.org/10.1021/ct700119m
  • Sharma, S., Yang, J., Düttmann, S., Watzinger, P., Kötter, P., & Entian, K.-D. (2014). Identification of novel methyltransferases, Bmt5 and Bmt6, responsible for the m3U methylations of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Research, 42(5), 3246–3260. https://doi.org/10.1093/nar/gkt1281
  • Singh, U. C., & Kollman, P. A. (1984). An approach to computing electrostatic charges for molecules. Journal of Computational Chemistry, 5(2), 129–145. https://doi.org/10.1002/jcc.540050204
  • Szostak, J. W. (2017). The narrow road to the deep past: In search of the chemistry of the origin of life. Angewandte Chemie (International ed. in English), 56(37), 11037–11043. https://doi.org/10.1002/anie.201704048)
  • Tan, D., Piana, S., Dirks, R. M., & Shaw, D. E. (2018). RNA force field with accuracy comparable to state-of-the-art protein force fields. Proceedings of the National Academy of Sciences of the United States of America, 115(7), E1346–E1355. https://doi.org/10.1073/pnas.1713027115
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Werner, H. J., Manby, F. R., & Knowles, P. J. (2003). Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations. Journal of Chemical Physics. 118(18), 8149–8160. https://doi.org/10.1063/1.1564816
  • Wolf, J., Gerber, A. P., & Keller, W. (2002). tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. The EMBO Journal, 21(14), 3841–3851. https://doi.org/10.1093/emboj/cdf362
  • Yildirim, I., Kennedy, S. D., Stern, H. A., Hart, J. M., Kierzek, R., & Turner, D. H. (2012). Revision of AMBER torsional parameters for RNA improves free energy predictions for tetramer duplexes with GC and iGiC base pairs. Journal of Chemical Theory and Computation, 8(1), 172–181. https://doi.org/10.1021/ct200557r
  • Zgarbová, M., Otyepka, M., Šponer, J., Mládek, A., Banáš, P., Cheatham, T. E., III, & Jurečka, P. (2011). Refinement of the Cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. Journal of Chemical Theory and Computation, 7(9), 2886–2902. https://doi.org/10.1021/ct200162x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.