177
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Discovery of plant-based phytochemical as effective antivirals that target the non-structural protein C of the Nipah virus through computational methods

, , , , , , & show all
Pages 3568-3578 | Received 01 Feb 2023, Accepted 08 May 2023, Published online: 24 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
  • Aditi, & Shariff, M. (2019). Nipah virus infection: A review. Epidemiology and Infection, 147, e95. https://doi.org/10.1017/S0950268819000086
  • Andrejeva, J., Young, D. F., Goodbourn, S., & Randall, R. E. (2002). Degradation of STAT1 and STAT2 by the V proteins of simian virus 5 and human parainfluenza virus type 2, respectively: Consequences for virus replication in the presence of alpha/beta and gamma interferons. Journal of Virology, 76(5), 2159–2167. https://doi.org/10.1128/jvi.76.5.2159-2167.2002
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(suppl_2), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. v., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Boxer, E. L., Nanda, S. K., & Baron, M. D. (2009). The rinderpest virus non-structural C protein blocks the induction of type 1 interferon. Virology, 385(1), 134–142. https://doi.org/10.1016/j.virol.2008.11.022
  • Chua, K. B. (2003). Nipah virus outbreak in Malaysia. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 26(3), 265–275. https://doi.org/10.1016/s1386-6532(02)00268-8
  • Chua, K. B. (2012). Introduction: Nipah virus--discovery and origin. Current Topics in Microbiology and Immunology, 359, 1–9. https://doi.org/10.1007/82_2012_218
  • Ciancanelli, M. J., Volchkova, V. A., Shaw, M. L., Volchkov, V. E., & Basler, C. F. (2009). Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism. Journal of Virology, 83(16), 7828–7841. https://doi.org/10.1128/JVI.02610-08
  • Clayton, B. A., Middleton, D., Bergfeld, J., Haining, J., Arkinstall, R., Wang, L., & Marsh, G. A. (2012). Transmission routes for nipah virus from Malaysia and Bangladesh. Emerging Infectious Diseases, 18(12), 1983–1993. https://doi.org/10.3201/eid1812.120875
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Epstein, J. H., Field, H. E., Luby, S., Pulliam, J. R. C., & Daszak, P. (2006). Nipah virus: Impact, origins, and causes of emergence. Current Infectious Disease Reports, 8(1), 59–65. https://doi.org/10.1007/s11908-006-0036-2
  • Fleming, S. B. (2016). Viral inhibition of the IFN-induced JAK/STAT signalling pathway: Development of live attenuated vaccines by mutation of viral-encoded IFN-antagonists. Vaccines, 4(3), 23. https://doi.org/10.3390/vaccines4030023
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. a., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. a., Nakatsuji, H., Li, X., Caricato, M., Marenich, a V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). G16_D09 (Revision D.09). Gaussian, Inc.
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Henipaviruses - Chapter 4 - 2020 Yellow Book | Travelers’ Health | CDC. (n.d.). Retrieved August 26, 2022, from https://wwwnc.cdc.gov/travel/yellowbook/2020/travel-related-infectious-diseases/henipaviruses
  • Hess, B. (2008). P-LINCS: A parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122. https://doi.org/10.1021/ct700200b
  • Horie, R., Yoneda, M., Uchida, S., Sato, H., & Kai, C. (2016). Region of Nipah virus C protein responsible for shuttling between the cytoplasm and nucleus. Virology, 497, 294–304. https://doi.org/10.1016/j.virol.2016.07.013
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & Mackerell, A. D. (2016). charmm36m: An improved force field for folded and intrinsically disordered proteins. Nat Methods, 14(1), 71–73. https://doi.org/10.1038/nMeth.4067
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Islam, M. S., Sazzad, H. M. S., Satter, S. M., Sultana, S., Hossain, M. J., Hasan, M., Rahman, M., Campbell, S., Cannon, D. L., Ströher, U., Daszak, P., Luby, S. P., & Gurley, E. S. (2016). Nipah virus transmission from bats to humans associated with drinking traditional liquor made from date palm sap, Bangladesh, 2011–2014. Emerging Infectious Diseases, 22(4), 664–670. https://doi.org/10.3201/eid2204.151747
  • Ito, M., Iwasaki, M., Takeda, M., Nakamura, T., Yanagi, Y., & Ohno, S. (2013). Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. Journal of Virology, 87(17), 9633–9642. https://doi.org/10.1128/JVI.00714-13
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Keiffer, T. R., Ciancanelli, M. J., Edwards, M. R., & Basler, C. F. (2020). Interactions of the Nipah virus P, V, and W proteins across the STAT family of transcription factors. mSphere, 5(6), e00449-20. https://doi.org/10.1128/mSphere.00449-20
  • Kubota, T., Yokosawa, N., Yokota, S.-I., Fujii, N., Tashiro, M., & Kato, A. (2005). Mumps virus V protein antagonizes interferon without the complete degradation of STAT1. Journal of Virology, 79(7), 4451–4459. https://doi.org/10.1128/JVI.79.7.4451-4459.2005
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Liew, Y. J. M., Ibrahim, P. A. S., Ong, H. M., Chong, C. N., Tan, C. T., Schee, J. P., Gómez Román, R., Cherian, N. G., Wong, W. F., & Chang, L.-Y. (2022). The immunobiology of Nipah virus. Microorganisms, 10(6), 1162. https://doi.org/10.3390/microorganisms10061162
  • LigPrep. (2020). Schrödinger release 2020-4. Schrödinger, LLC.
  • Lo Presti, A., Cella, E., Giovanetti, M., Lai, A., Angeletti, S., Zehender, G., & Ciccozzi, M. (2016). Origin and evolution of Nipah virus. Journal of Medical Virology, 88(3), 380–388. https://doi.org/10.1002/jmv.24345
  • Luby, S. P., Gurley, E. S., & Hossain, M. J. (2009). Transmission of human infection with Nipah virus. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 49(11), 1743–1748. https://doi.org/10.1086/647951
  • Mathieu, C., Guillaume, V., Volchkova, V. A., Pohl, C., Jacquot, F., Looi, R. Y., Wong, K. T., Legras-Lachuer, C., Volchkov, V. E., Lachuer, J., & Horvat, B. (2012). Nonstructural Nipah virus C protein regulates both the early host proinflammatory response and viral virulence. Journal of Virology, 86(19), 10766–10775. https://doi.org/10.1128/JVI.01203-12
  • Miyamoto, S., & Kollman, P. A. (1992). Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Nan, Y., Wu, C., & Zhang, Y.-J. (2017). Interplay between Janus kinase/signal transducer and activator of transcription signaling activated by type I interferons and viral antagonism. Frontiers in Immunology, 8, 1758. https://doi.org/10.3389/fimmu.2017.01758
  • Nishie, T., Nagata, K., & Takeuchi, K. (2007). The C protein of wild-type measles virus has the ability to shuttle between the nucleus and the cytoplasm. Microbes and Infection, 9(3), 344–354. https://doi.org/10.1016/j.micinf.2006.12.008
  • Oda, K., Matoba, Y., Irie, T., Kawabata, R., Fukushi, M., Sugiyama, M., & Sakaguchi, T. (2015). Structural basis of the inhibition of STAT1 activity by Sendai virus C protein. Journal of Virology, 89(22), 11487–11499. https://doi.org/10.1128/JVI.01887-15
  • Ojha, R., Pareek, A., Pandey, R. K., Prusty, D., & Prajapati, V. K. (2019). Strategic development of a next-generation multi-epitope vaccine to prevent Nipah virus zoonotic infection. ACS Omega, 4(8), 13069–13079. https://doi.org/10.1021/acsomega.9b00944
  • Park, A., Yun, T., Vigant, F., Pernet, O., Won, S. T., Dawes, B. E., Bartkowski, W., Freiberg, A. N., & Lee, B. (2016). Nipah virus C protein recruits Tsg101 to promote the efficient release of virus in an ESCRT-dependent pathway. PLoS Pathogens, 12(5), e1005659. https://doi.org/10.1371/journal.ppat.1005659
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Portner, A., Gupta, K. C., Seyer, J. M., Beachey, E. H., & Kingsbury, D. W. (1986). Localization and characterization of Sendai virus nonstructural C and C’ proteins by antibodies against synthetic peptides. Virus Research, 6(2), 109–121. https://doi.org/10.1016/0168-1702(86)90043-2
  • Prabhu, D., Rajamanikandan, S., Sureshan, M., Jeyakanthan, J., & Saraboji, K. (2021). Modelling studies reveal the importance of the C-terminal inter motif loop of NSP1 as a promising target site for drug discovery and screening of potential phytochemicals to combat SARS-CoV-2. Journal of Molecular Graphics & Modelling, 106, 107920. https://doi.org/10.1016/j.jmgm.2021.107920
  • Prime. (2020). Schrödinger release 2020-4. Schrödinger, LLC.
  • QikProp. (2020). Schrödinger release 2020-4. Schrödinger, LLC.
  • Rahman, S. A., Hassan, S. S., Olival, K. J., Mohamed, M., Chang, L.-Y., Hassan, L., Saad, N. M., Shohaimi, S. A., Mamat, Z. C., Naim, M. S., Epstein, J. H., Suri, A. S., Field, H. E., Daszak, P, & Henipavirus Ecology Research Group. (2010). Characterization of Nipah virus from naturally infected Pteropus vampyrus bats, Malaysia. Emerging Infectious Diseases, 16(12), 1990–1993. https://doi.org/10.3201/eid1612.091790
  • Schrödinger. (2020). Protein preparation wizard; epik. Schrödinger, LLC.
  • Schrödinger Release 2020-4. (2020). SiteMap. Schrödinger, LLC.
  • Seif, F., Khoshmirsafa, M., Aazami, H., Mohsenzadegan, M., Sedighi, G., & Bahar, M. (2017). The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Communication and Signaling: CCS, 15(1), 23. https://doi.org/10.1186/s12964-017-0177-y
  • Sharma, V., Kaushik, S., Kumar, R., Yadav, J. P., & Kaushik, S. (2019). Emerging trends of Nipah virus: A review. Reviews in Medical Virology, 29(1), e2010. https://doi.org/10.1002/rmv.2010
  • Shaw, M. L., García-Sastre, A., Palese, P., & Basler, C. F. (2004). Nipah virus V and W proteins have a common STAT1-binding domain yet inhibit STAT1 activation from the cytoplasmic and nuclear compartments, respectively. Journal of Virology, 78(11), 5633–5641. https://doi.org/10.1128/JVI.78.11.5633-5641.2004
  • Singh, R. K., Dhama, K., Chakraborty, S., Tiwari, R., Natesan, S., Khandia, R., Munjal, A., Vora, K. S., Latheef, S. K., Karthik, K., Singh Malik, Y., Singh, R., Chaicumpa, W., & Mourya, D. T. (2019). Nipah virus: Epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies – A comprehensive review. The Veterinary Quarterly, 39(1), 26–55. https://doi.org/10.1080/01652176.2019.1580827
  • Skowron, K., Bauza-Kaszewska, J., Grudlewska-Buda, K., Wiktorczyk-Kapischke, N., Zacharski, M., Bernaciak, Z., & Gospodarek-Komkowska, E. (2021). Nipah virus–Another threat from the world of zoonotic viruses. Frontiers in Microbiology, 12, 811157. https://doi.org/10.3389/FMICB.2021.811157
  • Sun, B., Jia, L., Liang, B., Chen, Q., & Liu, D. (2018). Phylogeography, transmission, and viral proteins of Nipah virus. Virologica Sinica, 33(5), 385–393. https://doi.org/10.1007/s12250-018-0050-1
  • Sureshan, M., Prabhu, D., Aruldoss, I., & Saraboji, K. (2022). Potential inhibitors for peroxiredoxin 6 of W. bancrofti: A combined study of modelling, structure-based drug design and MD simulation. Journal of Molecular Graphics & Modelling, 112, 108115. https://doi.org/10.1016/j.jmgm.2021.108115
  • Sureshan, M., Rajamanikandan, S., Srimari, S., Prabhu, D., Jeyakanthan, J., & Saraboji, K. (2022). Designing specific inhibitors against dihydrofolate reductase of W. bancrofti towards drug discovery for lymphatic filariasis. Structural Chemistry, 2022, 1–13. https://doi.org/10.1007/S11224-022-01896-1
  • Talbot-Cooper, C., Pantelejevs, T., Shannon, J. P., Cherry, C. R., Au, M. T., Hyvönen, M., Hickman, H. D., & Smith, G. L. (2022). Poxviruses and paramyxoviruses use a conserved mechanism of STAT1 antagonism to inhibit interferon signaling. Cell Host & Microbe, 30(3), 357–372.e11. https://doi.org/10.1016/j.chom.2022.01.014
  • The PyMOL Molecular Graphics System Version 2.0. (n.d). Schrödinger, LLC.
  • Tsimbalyuk, S., Cross, E. M., Hoad, M., Donnelly, C. M., Roby, J. A., & Forwood, J. K. (2020). The intrinsically disordered W protein is multifunctional during henipavirus infection, disrupting host signalling pathways and nuclear import. Cells, 9(8), 1913. https://doi.org/10.3390/cells9081913
  • Vrahatis, M. N., Androulakis, G. S., Lambrinos, J. N., & Magoulas, G. D. (2000). A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics, 114(2), 367–386. https://doi.org/10.1016/S0377-0427(99)00276-9
  • Wacharapluesadee, S., Boongird, K., Wanghongsa, S., Ratanasetyuth, N., Supavonwong, P., Saengsen, D., Gongal, G. N., & Hemachudha, T. (2010). A longitudinal study of the prevalence of Nipah virus in Pteropus lylei bats in Thailand: Evidence for seasonal preference in disease transmission. Vector Borne and Zoonotic Diseases (Larchmont, N.Y.), 10(2), 183–190. https://doi.org/10.1089/vbz.2008.0105
  • Wang, C., Wang, T., Duan, L., Chen, H., Hu, R., Wang, X., Jia, Y., Chu, Z., Liu, H., Wang, X., Zhang, S., Xiao, S., Wang, J., Dang, R., & Yang, Z. (2021). Evasion of host antiviral innate immunity by paramyxovirus accessory proteins. Frontiers in Microbiology, 12, 790191. https://doi.org/10.3389/fmicb.2021.790191
  • Weingartl, H., Czub, S., Copps, J., Berhane, Y., Middleton, D., Marszal, P., Gren, J., Smith, G., Ganske, S., Manning, L., & Czub, M. (2005). Invasion of the central nervous system in a porcine host by nipah virus. Journal of Virology, 79(12), 7528–7534. https://doi.org/10.1128/JVI.79.12.7528-7534.2005
  • Zhan, C.-G., Nichols, J. A., & Dixon, D. A. (2003). Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. The Journal of Physical Chemistry A, 107(20), 4184–4195. https://doi.org/10.1021/jp0225774
  • Zheng, Y., Zheng, M., Ling, X., Liu, Y., Xue, Y., An, L., Gu, N., & Jin, M. (2013). Design, synthesis, quantum chemical studies and biological activity evaluation of pyrazole-benzimidazole derivatives as potent Aurora A/B kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(12), 3523–3530. https://doi.org/10.1016/j.bmcl.2013.04.039
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.