194
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational and experimental validation of phthalocyanine and hypericin as effective SARS-CoV-2 fusion inhibitors

, , , &
Pages 3920-3934 | Received 02 Feb 2023, Accepted 16 May 2023, Published online: 26 May 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Bajrai, L. H., Ali, S., Kafrawy, E., Hassan, A. M., Tolah, A. M., Alnahas, R. S., Sohrab, S. S., Rehan, M., & Azhar, E. I. (2022). In vitro screening of anti ‑ viral and virucidal effects against SARS ‑ CoV ‑ 2 by Hypericum perforatum and Echinacea. Scientific Reports, 12(1), 17. https://doi.org/10.1038/s41598-022-26157-3
  • Battles, M. B., Langedijk, J. P., Furmanova-Hollenstein, P., Chaiwatpongsakorn, S., Costello, H. M., Kwanten, L., Vranckx, L., Vink, P., Jaensch, S., Jonckers, T. H. M., Koul, A., Arnoult, E., Peeples, M. E., Roymans, D., & McLellan, J. S. (2016). Molecular mechanism of respiratory syncytial virus fusion inhibitors. Nature Chemical Biology, 12(2), 87–93. https://doi.org/10.1038/nchembio.1982
  • Battles, M. B., & McLellan, J. S. (2019). Respiratory syncytial virus entry and how to block it. Nature Reviews. Microbiology, 17(4), 233–245. https://doi.org/10.1038/s41579-019-0149-x
  • Biocca, S., Arcangeli, T., Tagliaferri, E., Testa, B., Vindigni, G., Oteri, F., Giorgi, A., Iacovelli, F., Novelli, G., Desideri, A., & Falconi, M. (2013). Simulative and experimental investigation on the cleavage site that generates the soluble human LOX-1. Archives of Biochemistry and Biophysics, 540(1-2), 9–18. https://doi.org/10.1016/j.abb.2013.10.001
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Casalino, L., Gaieb, Z., Goldsmith, J. A., Hjorth, C. K., Dommer, A. C., Harbison, A. M., Fogarty, C. A., Barros, E. P., Taylor, B. C., Mclellan, J. S., Fadda, E., & Amaro, R. E. (2020). Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Central Science, 6(10), 1722–1734. https://doi.org/10.1021/acscentsci.0c01056
  • Chen, H., Feng, R., Muhammad, I., Abbas, G., Zhang, Y., Ren, Y., Huang, X., Zhang, R., Diao, L., Wang, X., & Li, G. (2019). Protective effects of hypericin against infectious bronchitis virus induced apoptosis and reactive oxygen species in chicken embryo kidney cells. Poultry Science, 98(12), 6367–6377. https://doi.org/10.3382/ps/pez465
  • Chen, H., Muhammad, I., Zhang, Y., Ren, Y., Zhang, R., Huang, X., Diao, L., Liu, H., Li, X., Sun, X., Abbas, G., & Li, G. (2019). Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L. Frontiers in Pharmacology, 10, 1272. https://doi.org/10.3389/fphar.2019.01272
  • Choi, Y. K., Cao, Y., Frank, M., Woo, H., Park, S. J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2021). Structure, dynamics, receptor binding, and antibody binding of the fully glycosylated full-length SARS-CoV-2 spike protein in a viral membrane. Journal of Chemical Theory and Computation, 17(4), 2479–2487. https://doi.org/10.1021/acs.jctc.0c01144
  • da Silva Santos, P. S., da Fonseca Orcina, B., Machado, R. R. G., Vilhena, F. V., da Costa Alves, L. M., Zangrando, M. S. R., de Oliveira, R. C., Soares, M. Q. S., Simão, A. N. C., Pietro, E. C. I. N., Kuroda, J. P. G., de Almeida Benjamim, I. A., Araujo, D. B., Toma, S. H., Flor, L., Araki, K., & Durigon, E. L. (2021). Beneficial effects of a mouthwash containing an antiviral phthalocyanine derivative on the length of hospital stay for COVID-19: Randomised trial. Scientific Reports, 11(1), 19937. https://doi.org/10.1038/s41598-021-99013-5
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Degar, S., Prince, A. M., Pascual, D., Lavie, G., Levin, B., Mazur, Y., Lavie, D., Ehrlich, L. S., Carter, C., & Meruelo, D. (1992). Inactivation of the human immunodeficiency virus by hypericin: evidence for photochemical alterations of p24 and a Block in Uncoating. AIDS Research and Human Retroviruses, 8(11), 1929–1936. https://doi.org/10.1089/aid.1992.8.1929
  • Delcanale, P., Uriati, E., Mariangeli, M., Mussini, A., Moreno, A., Lelli, D., Cavanna, L., Bianchini, P., Diaspro, A., Abbruzzetti, S., & Viappiani, C. (2022). The Interaction of Hypericin with SARS-CoV-2 Reveals a Multimodal Antiviral Activity. ACS Applied Materials & Interfaces, 14(12), 14025–14032. https://doi.org/10.1021/acsami.1c22439
  • Feller, S. E., Zhang, Y., Pastor, R. W., & Brooks, B. R. (1995). Constant pressure molecular dynamics simulation: The Langevin piston method. The Journal of Chemical Physics, 103(11), 4613–4621. https://doi.org/10.1063/1.470648
  • François, K. O., Pannecouque, C., Auwerx, J., Lozano, V., Pérez-Pérez, M. J., Schols, D., & Balzarini, J. (2009). The phthalocyanine prototype derivative Alcian blue is the first synthetic agent with selective anti-human immunodeficiency virus activity due to its gp120 glycan-binding potential. Antimicrobial Agents and Chemotherapy, 53(11), 4852–4859. https://doi.org/10.1128/AAC.00811-09
  • Gattuso, H., Marazzi, M., Dehez, F., & Monari, A. (2017). Deciphering the photosensitization mechanisms of hypericin towards biological membranes. Physical Chemistry Chemical Physics : PCCP, 19(34), 23187–23193. https://doi.org/10.1039/c7cp03723f
  • Goga, N., Rzepiela, A. J., De Vries, A. H., Marrink, S. J., & Berendsen, H. J. C. (2012). Efficient algorithms for langevin and DPD dynamics. Journal of Chemical Theory and Computation, 8(10), 3637–3649. https://doi.org/10.1021/ct3000876
  • Greco, E., Quintiliani, G., Santucci, M. B., Serafino, A., Ciccaglione, A. R., Marcantonio, C., Papi, M., Maulucci, G., Delogu, G., Martino, A., Goletti, D., Sarmati, L., Andreoni, M., Altieri, A., Alma, M., Caccamo, N., Di Liberto, D., De Spirito, M., Savage, N. D., … Fraziano, M. (2012). Janus-faced liposomes enhance antimicrobial innate immune response in Mycobacterium tuberculosis infection. Proceedings of the National Academy of Sciences, 109(21), E1360-1368. https://doi.org/10.1073/pnas.1200484109
  • Grünewald, F., Kroon, P. C., Souza, P. C. T., & Marrink, S. J. (2021). Protocol for simulations of PEGylated proteins with Martini 3. Methods in Molecular Biology, 2199, 315–335. https://doi.org/10.1007/978-1-0716-0892-0_18
  • Guixà-González, R., Rodriguez-Espigares, I., Ramírez-Anguita, J. M., Carrió-Gaspar, P., Martinez-Seara, H., Giorgino, T., & Selent, J. (2014). MEMBPLUGIN: Studying membrane complexity in VMD. Bioinformatics (Oxford, England), 30(10), 1478–1480. https://doi.org/10.1093/bioinformatics/btu037
  • Guvench, O., Mallajosyula, S. S., Raman, E. P., Hatcher, E., Vanommeslaeghe, K., Foster, T. J., Jamison, F. W., & MacKerell, A. D. (2011). CHARMM additive all-atom force field for carbohydrate derivatives and its utility in polysaccharide and carbohydrate–protein modeling. Journal of Chemical Theory and Computation, 7(10), 3162–3180. https://doi.org/10.1021/ct200328p
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A Linear Constraint Solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Huang, J., Rauscher, S., Nawrocki, G., Ran, T., Feig, M., De Groot, B. L., Grubmüller, H., & MacKerell, A. D. (2017). CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nature Methods, 14(1), 71–73. https://doi.org/10.1038/nmeth.4067
  • Hudson, J. B., Harris, L., & Towers, G. H. N. (1993). The importance of light in the anti-HIV effect of hypericin. Antiviral Research, 20(2), 173–178. https://doi.org/10.1016/0166-3542(93)90006-5
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Iannone, F., Ambrosino, F., Bracco, G., De Rosa, M., Funel, A., Guarnieri, G., Migliori, S., Palombi, F., Ponti, G., Santomauro, G., & Procacci, P. (2019). CRESCO ENEA HPC clusters: A working example of a multifabric GPFS Spectrum Scale layout. 2019 International Conference on High Performance Computing and Simulation, HPCS, 2019, 1051–1052. https://doi.org/10.1109/HPCS48598.2019.9188135
  • Jang, W. D., Jeon, S., Kim, S., & Lee, S. Y. (2021). Drugs repurposed for COVID-19 by virtual screening of 6,218 drugs and cell-based assay. Proceedings of the National Academy of Sciences, 118(30), e2024302118. https://doi.org/10.1073/pnas.2024302118
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM-GUI: A web-based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Karioti, A., & Bilia, A. R. (2010). Hypericins as potential leads for new therapeutics. International Journal of Molecular Sciences, 11(2), 562–594. https://doi.org/10.3390/ijms11020562
  • Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H. G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838), 498–502. https://doi.org/10.1038/s41586-020-2665-2
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  • Klauda, J. B., Venable, R. M., Freites, J. A., O'Connor, J. W., Tobias, D. J., Mondragon-Ramirez, C., Vorobyov, I., MacKerell, A. D., & Pastor, R. W. (2010). Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types. The Journal of Physical Chemistry. B, 114(23), 7830–7843. https://doi.org/10.1021/jp101759q
  • Korneev, D., Kurskaya, O., Sharshov, K., Eastwood, J., & Strakhovskaya, M. (2019). Ultrastructural aspects of photodynamic inactivation of highly pathogenic avian H5N8 influenza virus. Viruses, 11(10), 955. https://doi.org/10.3390/v11100955
  • Kubin, A., Wierrani, F., Burner, U., Alth, G., & Grunberger, W. (2005). Hypericin - the facts about a controversial agent. Current Pharmaceutical Design, 11(2), 233–253. https://doi.org/10.2174/1381612053382287
  • Kumar, S., & Nussinov, R. (2002). Close-range electrostatic interactions in proteins. ChemBioChem. 3(7), 604. https://doi.org/10.1002/1439-7633(20020703)3:7<604::AID-CBIC604>3.0.CO;2-X
  • Lenard, J., Rabson, A., & Vanderoef, R. (1993). Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: Inhibition of fusion and syncytia formation. Proceedings of the National Academy of Sciences of the United States of America, 90(1), 158–162. https://doi.org/10.1073/pnas.90.1.158
  • Lopes, B. R. P., da Costa, M. F., Genova Ribeiro, A., da Silva, T. F., Lima, C. S., Caruso, I. P., de Araujo, G. C., Kubo, L. H., Iacovelli, F., Falconi, M., Desideri, A., de Oliveira, J., Regasini, L. O., de Souza, F. P., & Toledo, K. A. (2020). Quercetin pentaacetate inhibits in vitro human respiratory syncytial virus adhesion. Virus Research, 276(May 2019), 197805. https://doi.org/10.1016/j.virusres.2019.197805
  • Martínez, L., Andrade, R., Birgin, E. G., & Martínez, J. M. (2009). PACKMOL: A package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 30(13), 2157–2164. https://doi.org/10.1002/jcc.21224
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Matos, A. d R., Caetano, B. C., de Almeida Filho, J. L., Martins, J. S. C. d C., de Oliveira, M. G. P., Sousa, T., das, C., Horta, M. A. P., Siqueira, M. M., & Fernandez, J. H. (2022). Identification of hypericin as a candidate repurposed therapeutic agent for COVID-19 and its potential anti-SARS-CoV-2 activity. Frontiers in Microbiology, 13(February), 828984. https://doi.org/10.3389/fmicb.2022.828984
  • Miao, Y., Feher, V. A., & McCammon, J. A. (2015). Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation, 11(8), 3584–3595. https://doi.org/10.1021/acs.jctc.5b00436
  • Mohamed, F. F., Anhlan, D., Schöfbänker, M., Schreiber, A., Classen, N., Hensel, A., Hempel, G., Scholz, W., Kühn, J., Hrincius, E. R., & Ludwig, S. (2022). Hypericum perforatum and its ingredients hypericin and pseudohypericin demonstrate an antiviral activity against SARS-CoV-2. Pharmaceuticals, 15(5), 530. https://doi.org/10.3390/ph15050530
  • Nikolaeva-Glomb, L., Mukova, L., Nikolova, N., Kussovski, V., Doumanova, L., Mantareva, V., Angelov, I., Wöhrle, D., & Galabov, A. S. (2017). Photodynamic effect of some phthalocyanines on enveloped and naked viruses. Acta Virologica, 61(3), 341–346. https://doi.org/10.4149/av_2017_313
  • Pan, B. W., Xiao, J. W., Li, S. M., Yang, X., Zhou, X., Sun, Q. W., Chen, M., Xie, S. X., Sakharkar, M. K., Yang, J., Zhou, Y., & Wei, Y. (2022). Inhibitors of HIV-1 and Cathepsin L proteases identified from the insect gall of hypericum kouytchense. Pharmaceuticals, 15(12), 1499. https://doi.org/10.3390/ph15121499
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pezeshkian, W., Grünewald, F., Narykov, O., Lu, S., Wassenaar, T. A., Marrink, S. J., & Korkin, D. (2023). Molecular architecture of SARS-CoV-2 envelope by integrative modeling. BioRxiv, 2021.09.15.459697. https://www.biorxiv.org/content/10.1101/2021.09.15.459697
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Romeo, A., Iacovelli, F., & Falconi, M. (2020). Targeting the SARS-CoV-2 spike glycoprotein prefusion conformation: Virtual screening and molecular dynamics simulations applied to the identification of potential fusion inhibitors. Virus Research, 286(June), 198068. https://doi.org/10.1016/j.virusres.2020.198068
  • Saadi, F., Pal, D., & Sarma, J. D. (2021). Spike glycoprotein is central to coronavirus pathogenesis-parallel between m-CoV and SARS-CoV-2. Annals of Neurosciences, 28(3-4), 201–218. https://doi.org/10.1177/09727531211023755
  • Santos, K. L. M., Barros, R. M., da Silva Lima, D. P., Nunes, A. M. A., Sato, M. R., Faccio, R., de Lima Damasceno, B. P. G., & Oshiro-Junior, J. A. (2020). Prospective application of phthalocyanines in the photodynamic therapy against microorganisms and tumor cells: A mini-review. Photodiagnosis and Photodynamic Therapy, 32(August), 102032. https://doi.org/10.1016/j.pdpdt.2020.102032
  • Sen, C. K., & Packer, L. (1996). Antioxidant and redox regulation of gene transcription. FASEB Journal : Official Publication of the Federation of American Societies for Experimental Biology, 10(7), 709–720. https://doi.org/10.1096/fasebj.10.7.8635688
  • Smetana, Z., Mendelson, E., Manor, J., van Lier, J. E., Ben-Hur, E., Salzberg, S., & Malik, Z. (1994). Photodynamic inactivation of herpes viruses with phthalocyanine derivatives. Journal of Photochemistry and Photobiology. B, Biology, 22(1), 37–43. https://doi.org/10.1016/1011-1344(93)06949-4
  • Smith, M., & Smith, J. C. (2020). Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ACE2 interface, ChemRxiv, 2. https://doi.org/10.26434/chemrxiv.11871402.v4
  • Sorokin, A. B. (2013). Phthalocyanine metal complexes in catalysis. Chemical Reviews, 113(10), 8152–8191. https://doi.org/10.1021/cr4000072
  • Souza, P. C. T., Alessandri, R., Barnoud, J., Thallmair, S., Faustino, I., Grünewald, F., Patmanidis, I., Abdizadeh, H., Bruininks, B. M. H., Wassenaar, T. A., Kroon, P. C., Melcr, J., Nieto, V., Corradi, V., Khan, H. M., Domański, J., Javanainen, M., Martinez-Seara, H., Reuter, N., … Marrink, S. J. (2021). Martini 3: A general purpose force field for coarse-grained molecular dynamics. Nature Methods, 18(4), 382–388. https://doi.org/10.1038/s41592-021-01098-3
  • Souza, P. C. T., Thallmair, S., Conflitti, P., Ramírez-Palacios, C., Alessandri, R., Raniolo, S., Limongelli, V., & Marrink, S. J. (2020). Protein–ligand binding with the coarse-grained Martini model. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-17437-5
  • Stevenson, N. R., & Lenard, J. (1993). Antiretroviral activities of hypericin and rose bengal: Photodynamic effects on Friend leukemia virus infection of mice. Antiviral Research, 21(2), 119–127. https://doi.org/10.1016/0166-3542(93)90048-N
  • Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R., & Daniel, S. (2020). Coronavirus membrane fusion mechanism offers a potential target for antiviral development. Antiviral Research, 178(January), 104792. https://doi.org/10.1016/j.antiviral.2020.104792
  • Telenti, A., Arvin, A., Corey, L., Corti, D., Diamond, M. S., García-Sastre, A., Garry, R. F., Holmes, E. C., Pang, P. S., & Virgin, H. W. (2021). After the pandemic: Perspectives on the future trajectory of COVID-19. Nature, 596(7873), 495–504. https://doi.org/10.1038/s41586-021-03792-w
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Vzorov, A. N., Marzilli, L. G., Compans, R. W., & Dixon, D. W. (2003). Prevention of HIV-1 infection by phthalocyanines. Antiviral Research, 59(2), 99–109. https://doi.org/10.1016/S0166-3542(03)00035-4
  • Wang, B., Zhong, C., & Tieleman, D. P. (2022). Supramolecular organization of SARS-CoV and SARS-CoV-2 virions revealed by coarse-grained models of intact virus envelopes. Journal of Chemical Information and Modeling, 62(1), 176–186. https://doi.org/10.1021/acs.jcim.1c01240
  • Wang, J., Arantes, P. R., Bhattarai, A., Hsu, R. V., Pawnikar, S., Huang, Y. M., Palermo, G., & Miao, Y. (2021). Gaussian accelerated molecular dynamics: Principles and applications. WIREs Computational Molecular Science, 11(5), 1–32. https://doi.org/10.1002/wcms.1521
  • Wassenaar, T. A., Ingólfsson, H. I., Böckmann, R. A., Tieleman, D. P., & Marrink, S. J. (2015). Computational lipidomics with insane: A versatile tool for generating custom membranes for molecular simulations. Journal of Chemical Theory and Computation, 11(5), 2144–2155. https://doi.org/10.1021/acs.jctc.5b00209
  • Weber, N. D., Murray, B. K., North, J. A., & Wood, S. G. (1994). The antiviral agent hypericin has in vitro activity against HSV-1 through non-specific association with viral and cellular membranes. Antiviral Chemistry and Chemotherapy, 5(2), 83–90. https://doi.org/10.1177/095632029400500204
  • Woo, H., Park, S. J., Choi, Y. K., Park, T., Tanveer, M., Cao, Y., Kern, N. R., Lee, J., Yeom, M. S., Croll, T. I., Seok, C., & Im, W. (2020). Developing a fully glycosylated Full-length SARS-CoV-2 spike protein model in a viral membrane. The Journal of Physical Chemistry. B, 124(33), 7128–7137. https://doi.org/10.1021/acs.jpcb.0c04553
  • Wright, J. D. (2001). Phthalocyanines. In Encyclopedia of materials: science and technology (pp. 6987–6991). Elsevier. https://doi.org/10.1016/B0-08-043152-6/01238-9
  • Wu, J.-J., Zhang, J., Xia, C.-Y., Ding, K., Li, X.-X., Pan, X.-G., Xu, J.-K., He, J., & Zhang, W.-K. (2023). Hypericin: A natural anthraquinone as promising therapeutic agent. Phytomedicine : international Journal of Phytotherapy and Phytopharmacology, 111(January), 154654. https://doi.org/10.1016/j.phymed.2023.154654
  • Xiu, S., Dick, A., Ju, H., Mirzaie, S., Abdi, F., Cocklin, S., Zhan, P., & Liu, X. (2020). Inhibitors of SARS-CoV-2 entry: Current and future opportunities. Journal of Medicinal Chemistry, 63(21), 12256–12274. https://doi.org/10.1021/acs.jmedchem.0c00502
  • Yu, A., Pak, A. J., He, P., Monje-Galvan, V., Casalino, L., Gaieb, Z., Dommer, A. C., Amaro, R. E., & Voth, G. A. (2021). A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophysical Journal, 120(6), 1097–1104. https://doi.org/10.1016/j.bpj.2020.10.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.