242
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico and in vitro assays suggests Congo red dye degradation by a Lentinus sp. laccase enzyme

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 3802-3813 | Received 23 Jan 2023, Accepted 12 May 2023, Published online: 30 May 2023

References

  • Almeida, P. H., Oliveira, A. C. C. D., Souza, G. P. N. D., Friedrich, J. C., Linde, G. A., Colauto, N. B., & Valle, J. S. D. (2018). Decolorization of remazol brilliant blue R with laccase from Lentinus crinitus grown in agro-industrial by-products. Anais da Academia Brasileira de Ciencias, 90(4), 3463–3473. https://doi.org/10.1590/0001-3765201820170458
  • Arfken, G. (1985). The method of steepest descents. §7.4. In: Mathematical methods for physicists (3rd ed., pp. 428–436). Academic Press.
  • Arnittali, M., Anastassia, N. R., & Vagelis, H. (2019). Structure of biomolecules through molecular dynamics simulations. Procedia Computer Science, 156, 69–78. https://doi.org/10.1016/j.procs.2019.08.181
  • Awasthi, M., Jaiswal, N., Singh, S., Pandey, V. P., & Dwivedi, U. N. (2015). Molecular docking and dynamics simulation analyses unraveling the differential enzymatic catalysis by plant and fungal laccases with respect to lignin biosynthesis and degradation. Journal of Biomolecular Structure & Dynamics, 33(9), 1835–1849. https://doi.org/10.1080/07391102.2014.975282
  • Ballaminut, N., & Dácio, R. M. (2007). Characterization of fungal inoculum used in soil bioremediation. Brazilian Journal of Microbiology, 38(2), 248–252. https://doi.org/10.1590/S1517-83822007000200011
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bilal, M., Iqbal, H. M. N., & Barceló, D. (2019). Persistence of pesticides-based contaminants in the environment and their effective degradation using laccase-assisted biocatalytic systems. The Science of the Total Environment, 695, 133896. https://doi.org/10.1016/j.scitotenv.2019.133896
  • Bilal, M., Asgher, M., Parra-Saldivar, R., Hu, H., Wang, W., Zhang, X., & Iqbal, H. M. N. (2017). Immobilized ligninolytic enzymes: An innovative and environmental responsive technology to tackle dye-based industrial pollutants – A review. The Science of the Total Environment, v. 576, 646–659. https://doi.org/10.1016/j.scitotenv.2016.10.137
  • Bosco, F., Chiara, M., & Ruggeri, B. (2017). Decolorization of Congo red by phanerochaete chrysosporium: The role of biosorption and biodegradation decolorization of Congo red by Phanerochaete chrysosporium: The role of biosorption and biodegradation. Environmental Technology, 38(20), 2581–2588. https://doi.org/10.1080/09593330.2016.1271019
  • Cañas, A. I., & Camarero, S. (2010). Laccases and their natural mediators: Biotechnological tools for sustainable eco-friendly processes. Biotechnology Advances, 28(6), 694–705. https://doi.org/10.1016/j.biotechadv.2010.05.002
  • Christensen, N. J., & Kasper, P. K. (2013). Stability mechanisms of a thermophilic laccase probed by molecular dynamics. PLos One, 8(4), e61985. https://doi.org/10.1371/journal.pone.0061985
  • Coelho, G. D., Silva, K. K., Silva, D. P., Soares, J. K., Ballaminut, N., & Thomaz, D. V. (2020). Biodegradation of synthetic effluent containing CI direct red 28 (Congo red) by Lentinus sp. laccase leads to low ecotoxicity. Current Biotechnology, 9(2), 127–133. https://doi.org/10.2174/2211550109999200720162021
  • Conab, C. N. D A. (2022). Disponível em. https://www.conab.gov.br/ultimas-noticias/4768-producao-de-amendoim-cresce-mais-de-100-nos-ultimos-8-anos. Acesso em 23 fev. 2023.
  • Das, A., Bhattacharya, S., Panchanan, G., Navya, B. S., & Nambiar, P. (2016). Production, characterization and Congo red dye decolourizing efficiency of a laccase from Pleurotus ostreatus MTCC 142 cultivated on co-substrates of paddy straw and corn husk. Journal, Genetic Engineering & Biotechnology, 14(2), 281–288. https://doi.org/10.1016/j.jgeb.2016.09.007
  • Fabrini, F. F., et al. (2016). Production of laccase de Pycnoporus sanguineus in soybean molasses-based culture medium. Archives of Veterinary Sciences and Zoology at UNIPAR, 19(3), 159–164. https://doi.org/10.25110/arqvet.v19i3.6089
  • Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Computational and Mathematical Methods in Medicine, 2018, 1–12. https://doi.org/10.1155/2018/3502514
  • Hadibarata, T., Adnan, L. A., Yusoff, A. R. M., Yuniarto, A., Zubir, M. M. F. A., Khudhair, A. B., Teh, Z. C. Naser., & M. A., Rubiyatno. (2013). Microbial decolorization of an azo dye reactive black 5 using white-rot fungus Pleurotus eryngii F032. Water, Air, & Soil Pollution, 224(6), 1–9. https://doi.org/10.1007/s11270-013-1595-0
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hsu, C.-A., Wen, T.-N., Su, Y.-C., Jiang, Z.-B., Chen, C.-W., & Shyur, L.-F. (2012). Biological degradation of anthroquinone and azo dyes by a novel laccase from Lentinus sp. Environmental Science & Technology, 46(9), 5109–5117. https://doi.org/10.1021/es2047014
  • Iark, D., Buzzo, A. J. D. R., Garcia, J. A. A., Côrrea, V. G., Helm, C. V., Corrêa, R. C. G., Peralta, R. A., Peralta Muniz Moreira, R. d F., Bracht, A., & Peralta, R. M. (2019). Bioresource technology enzymatic degradation and detoxi fi cation of azo dye Congo red by a new laccase from Oudemansiella canarii. Bioresource Technology, 289(April), 121655. https://doi.org/10.1016/j.biortech.2019.121655
  • Kawabata, T. (2010). Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins, 78(5), 1195–1211. https://doi.org/10.1002/prot.22639
  • Kameshwar, A. K. S., Barber, R., & Qin, W. (2018). Comparative modeling and molecular docking analysis of white, brown and soft rot fungal laccases using lignin model compounds for understanding the structural and functional properties of Laccases. Journal of Molecular Graphics & Modelling, 79, 15–26. https://doi.org/10.1016/j.jmgm.2017.10.019
  • Khouni, I., Marrot, B., Moulin, P., & Ben Amar, R. (2011). Decolourization of the reconstituted textile effluent by different process treatments: Enzymatic catalysis, coagulation/flocculation and nanofiltration processes. Desalination, 268(1-3), 27–37. https://doi.org/10.1016/j.desal.2010.09.046
  • Knapp, B., Frantal, S., Cibena, M., Schreiner, W., & Bauer, P. (2011). Is an intuitive convergence definition of molecular dynamics simulations solely based on the root mean square deviation possible? Journal of Computational Biology: A Journal of Computational Molecular Cell Biology, 18(8), 997–1005. https://doi.org/10.1089/cmb.2010.0237
  • Liu, W. C. (2014). Crystal structure of laccase from Lentinus sp. at 1.8 A resolution. ID PDB: 1X1B. Protein Data Bank Japan. https://pdbj.org/emnavi/quick.php?id=3x1b. Structure data deposition date: Oct 31, 2014.
  • Maestre-Reyna, M., Liu, W.-C., Jeng, W.-Y., Lee, C.-C., Hsu, C.-A., Wen, T.-N., Wang, A. H.-J., & Shyur, L.-F. (2015). Structural and functional roles of glycosylation in fungal laccase from Lentinus sp. Plos One, 10(4), e0120601. https://doi.org/10.1371/journal.pone.0120601
  • Maia, R. T., & Amador, V. C. (2018). Molecular docking for detoxifying enzyme studies. In Intech, eds. I., 31–48. http://dx.doi.org/10.1039/C7RA00172J%0Ahttps://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics%0.A. https://doi.org/10.1016/j.colsurfa.2011.12.014
  • Magdalane, C. M., Priyadharsini, G. M. A., Kaviyarasu, K., Jothi, A. I., & Simiyon, G. G. (2021). Synthesis and characterization of TiO2 doped cobalt ferrite nanoparticles via microwave method: Investigation of photocatalytic performance of Congo red degradation dye. Surfaces and Interfaces, 25, n°101296. https://doi.org/10.1016/j.surfin.2021.101296
  • Martínez-Sotres, C., Rutiaga-Quiñones, J. G., Herrera-Bucio, R., Gallo, M., & López-Albarrán, P. (2015). Molecular docking insights into the inhibition of laccase activity by medicarpin. Wood Science and Technology, 49(4), 857–868. https://doi.org/10.1007/s00226-015-0734-8
  • Mejía-Otálvaro, F., Merino-Restrepo, A., & Hormaza-Anaguano, A. (2021). Evaluation of a Trametes pubescens laccase concentrated extract on allura red AC decolorization without the addition of synthetic mediators. Journal of Environmental Management, 285(112117), 112117. volumeISSN 0301-4797. https://doi.org/10.1016/j.jenvman.2021.112117
  • Miyamoto, S., & Kollman, P. A. (1992). SETTLE: An analytical version of the SHAKE and RATTLE algorithms for rigid water models. Journal of Computational Chemistry, 13(8), 952–962. https://doi.org/10.1002/jcc.540130805
  • Moreira-Neto, S. L., Mussatto, S. I., Machado, K. M. G., & Milagres, A. M. F. (2013). Decolorization of salt-alkaline effluent with industrial reactive dyes by laccase-producing basidiomycetes strains. Letters in Applied Microbiology, 56(4), 283–290. https://doi.org/10.1111/lam.12049
  • Neto, S. L. M., Coelho, G. D., Ballaminut, N., Matheus, D. R., Thomaz, D. V., & Machado, K. M. G. (2022). Application of Deconica castanella ligninolytic enzymatic system in the degradation of hexachlorobenzene in soil. Biotechnology and Applied Biochemistry, 69(6), 2437–2444. https://doi.org/10.1002/bab.2293
  • Moreira, S., Milagres, A. M. F., & Mussatto, S. I. (2014). Reactive dyes and textile effluent decolorization by a mediator system of salt-tolerant laccase from Peniophora cinerea. Separation and Purification Technology, v. 135, 183–189. https://doi.org/10.1016/j.seppur.2014.08.017
  • Morse, P. M., & Feshbach, H. (2001). Asymptotic series; method of steepest descent. §4.6. in: Methods of Theoretical Physics, Part I. McGraw-Hill. 1953. p. 434–443.
  • Mourkidou, E. Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochemistry and Molecular Biology, v31, 313–319.
  • Noman, E., et al. (2019). 377 Topics in Current Chemistry Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Springer International Publishing. https://doi.org/10.1007/s41061-019-0241-8
  • Ozcirak, E. S., & Ozturk, U. R. (2017). Production of ligninolytic enzymes by solid state fermentation using Pleurotus ostreatus. Annals of Agrarian Science. 15(2), 273–277. https://doi.org/10.1016/j.aasci.2017.04.003
  • Ozola-Davidane, R., Burlakovs, J., Tamm, T., Zeltkalne, S., Krauklis, A. E., & Klavins, M. (2021). Bentonite-ionic liquid composites for Congo red removal from aqueous solutions. Journal of Molecular Liquids, 337, 116373. n https://doi.org/10.1016/j.molliq.2021.116373
  • Peralta, R. M., et al. (2017). Enzymes from basidiomycetes—Peculiar and efficient tools for biotechnology. In Biotechnology of microbial enzymes (pp. 119–150). Elsevier Inc. https://doi.org/10.1016/B978-0-12-803725-6.00005-4
  • Pontes, F. J. S., Maia, R. T., Lima, M. C. P., Ayres, C. F. J., & Soares, T. A. (2016). The role of the conformational dynamics of glutathione S-transferase epsilon class on insecticide resistance. Journal of the Brazilian Chemical Society, 27(9), 1602–1615. https://doi.org/10.5935/0103-5053.20160040
  • Prabhavathi, P., Rajendran, R., Sundaram, S. K., Dinesh Kumar, S., & Santhanam, P. J. J. B. B. (2016). Molecular docking studies on potent adsorbed receptor of Thrh protein : A new target for biodegradation of indigo dye bioremediation & biodegradation molecular docking studies on potent adsorbed receptor of Thrh protein: A new target for biodegradation O. Journal of Bioremediation & Biodegradation, 7(4), 356. https://doi.org/10.4172/2155-6199.1000356
  • Reena, D. P., Kumar, R., & Kumar, A. (2014). Validation of computationally predicted substrates for laccase. Brazilian Archives of Biology and Technology, 57(5), 803–809., 2014 https://doi.org/10.1590/S1516-8913201402239
  • Sales, H. R. (2022). Desempenho agronômico de variedades de amendoim no semiárido de Minas Gerais cultivados com irrigação suplementar. Revista Cultura Agronômica, 31(2), 77–89. n https://doi.org/10.32929/2446-8355.2022v31n2p77-89
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock : Servers for rigid and symmetric docking. Nucleic Acids Research, 33(Web Server issue), w363–67. https://doi.org/10.1093/nar/gki481
  • Silva, M. A., Nascimento Júnior, J. C. d., Thomaz, D. V., Maia, R. T., Costa Amador, V., Tommaso, G., & Coelho, G. D. (2022). Comparative homology of Pleurotus ostreatus laccase enzyme: Swiss model or Modeller? Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2022.2138975
  • Singh, D., & Neeraj, G. (2020). Microbial laccase : A robust enzyme and its industrial applications. Biologia, 75(8), 1183–1193. https://doi.org/10.2478/s11756-019-00414-9
  • Singh, D., Krishna, K. S., & Shenu, J. (2014). Molecular docking of laccase protein from Bacillus safensis DSKK5 isolated from earthworm gut: A novel method to study dye decolorization potential. Water Air Soil Pollu, 225(11), 1–12. https://doi.org/10.1590/0001-3765201820170458
  • Singh, D., Rawat, S., Waseem, M., Gupta, S., Lynn, A., Nitin, M., Ramchiary, N., & Sharma, K. K. (2016). Molecular modeling and simulation studies of recombinant laccase from yersinia enterocolitica suggests significant role in the biotransformation of non-steroidal anti-inflammatory drugs. Biochemical and Biophysical Research Communications, 469(2), 306–312. https://doi.org/10.1016/j.bbrc.2015.11.096
  • Spoel, D., et al. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 25(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Unuofin, J. O., Anthony, I. O., & Uchechukwu, U. N. (2019). Aptitude of oxidative enzymes for treatment of wastewater pollutants: A laccase perspective. Molecules, 24(11), 2064. https://doi.org/10.3390/molecules24112064
  • Van Gunsteren, W. F., et al. (1996). Biomolecular Simulation, The GROMOS96 Manual and User Guide, vdf Hochschulverlag AG an der ETH Ziirich and BIOMOS b.v., Zurich, Groningen,.
  • Wang, F., Xu, L., Zhao, L., Ding, Z., Ma, H., & Terry, N. (2019). Fungal laccase production from lignocellulosic agricultural wastes by solid-state fermentation: A review. Microorganisms, 7(12), 665. https://doi.org/10.3390/microorganisms7120665
  • Wang, N., Chu, Y., Wu, F., Zhao, Z., & Xu, X. (2017). Decolorization and degradation of Congo red by a newly isolated white rot fungus, Ceriporia lacerata, from decayed mulberry branches. International Biodeterioration & Biodegradation, 117, 236–244. https://doi.org/10.1016/j.ibiod.2016.12.015
  • Yakupova, E. I., Bobyleva, L. G., Vikhlyantsev, I. M., & Bobylev, A. G. (2019). Congo red and amyloids : History and relationship. Bioscience Reports, 39(1), 1–22. https://doi.org/10.1042/BSR20181415
  • Zheng, Y., Cheng, B., Fan, J., Yu, J., & Ho, W. (2021). Review on nickel-based adsorption materials for Congo red. Journal of Hazardous Materials, 403n, 123559. https://doi.org/10.1016/j.jhazmat.2020.123559

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.