260
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Molecular modeling and biological investigation of novel s-triazine linked benzothiazole and coumarin hybrids as antimicrobial and antimycobacterial agents

, , , , ORCID Icon, & ORCID Icon show all
Pages 3814-3825 | Received 04 Jan 2023, Accepted 12 May 2023, Published online: 22 May 2023

References

  • Acar Çevik, U., Celik, I., Işık, A., Ahmad, I., Patel, H., Özkay, Y., & Kaplancıklı, Z. A. (2023). Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. Journal of Biomolecular Structure and Dynamics, 41(5), 1944–1958. https://doi.org/10.1080/07391102.2022.2025906
  • Ahmad, I., Akand, S. R., Shaikh, M., Pawara, R., Manjula, S. N., & Patel, H. (2022). Synthesis, molecular modelling study of the methaqualone analogues as anticonvulsant agent with improved cognition activity and minimized neurotoxicity. Journal of Molecular Structure, 1251, 131972. https://doi.org/10.1016/j.molstruc.2021.131972
  • Alelaimat, M. A., Al-Sha’er, M. A., & Basheer, H. A. (2023). Novel sulfonamide-triazine hybrid derivatives: Docking, synthesis, and biological evaluation as anticancer agents. ACS Omega, 8(15), 14247–14263. https://doi.org/10.1021/acsomega.3c01273
  • Aljuhani, A., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Turkistani, S. A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., & Abulkhair, H. S. (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-MPro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/D2RA04015H
  • Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L., & Pinto, A. (2020). An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. International Journal of Molecular Sciences, 21(13), 4618. https://doi.org/10.3390/ijms21134618
  • Antonijević, M. R., Simijonović, D. M., Avdović, E. H., Ćirić, A., Petrović, Z. D., Marković, J. D., Stepanić, V., & Marković, Z. S. (2021). Green one-pot synthesis of coumarin-hydroxybenzohydrazide hybrids and their antioxidant potency. Antioxidants, 10(7), 1106. https://doi.org/10.3390/antiox10071106
  • Asadi, P., Khodamoradi, E., Khodarahmi, G., Jahanian-Najafabadi, A., Marvi, H., & Dehghan Khalili, S. (2023). Novel N-α-amino acid spacer-conjugated phthalimide–triazine derivatives: Synthesis, antimicrobial and molecular docking studies. Amino Acids, 55(3), 337–348. https://doi.org/10.1007/s00726-023-03232-1
  • Ayipo, Y. O., Alananzeh, W. A., Ahmad, I., Patel, H., & Mordi, M. N. (2022). Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2104376
  • Bhagdev, K., & Sarkar, S. (2021). Benzothiazole: As an antidiabetic agent. Annals of the Romanian Society for Cell Biology, 25, 20269–20285. https://annalsofrscb.ro/index.php/journal/article/view/9199
  • Chavan, R. R., Hosamani, K. M., Kulkarni, B. D., & Joshi, S. D. (2018). Molecular docking studies and facile synthesis of most potent biologically active N-tert-butyl-4-(4-substituted phenyl)-2-((substituted-2-oxo-2H-chromen-4-yl)methylthio)-6-oxo-1,6-dihydropyrimidine-5-carboxamide hybrids: An approach for microwave-assisted syntheses and biological evaluation. Bioorganic Chemistry, 78, 185–194. https://doi.org/10.1016/J.BIOORG.2018.03.007
  • Cheke, R. S., Patel, H. M., Patil, V. M., Ansari, I. A., Ambhore, J. P., Shinde, S. D., Kadri, A., Snoussi, M., Adnan, M., Kharkar, P. S., Pasupuleti, V. R., & Deshmukh, P. K. (2022). Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics, 11(5), 566. https://doi.org/10.3390/antibiotics11050566
  • Curini, M., Cravotto, G., Epifano, F., & Giannone, G. (2006). Chemistry and biological activity of natural and synthetic prenyloxycoumarins. Current Medicinal Chemistry, 13(2), 199–222. https://doi.org/10.2174/092986706775197890
  • Dabhi, R. C., Sharma, V. S., Arya, P. S., Patel, U. P., Shrivastav, P. S., & Maru, J. J. (2023). Coumarin functionalized dimeric mesogens for promising anticoagulant activity: Tuning of liquid crystalline property. Journal of Molecular Structure, 1283, 135336. https://doi.org/10.1016/j.molstruc.2023.135336
  • de Groote, M. A., Jackson, M., Gonzalez-Juarrero, M., Li, W., Young, C. L., Wong, C., Graham, J., Day, J., Hoang, T., Jarvis, T. C., Ribble, W., Sun, X., & Ochsner, U. A. (2018). Optimization and lead selection of benzothiazole amide analogs toward a novel antimycobacterial agent. Frontiers in Microbiology, 9(SEP), 2231. https://doi.org/10.3389/FMICB.2018.02231/BIBTEX
  • Desai, N. C., Joshi, S. B., Khasiya, A. G., Jadeja, D. J., Mehta, H. K., Pandya, M., Ahmad, I., & Patel, H. (2022). Pyrazolo-imidazolidinones: Synthesis, antimicrobial assessment and molecular modelling studies by molecular mechanic and quantum mechanic approach. Journal of Molecular Structure, 1270, 134000. https://doi.org/10.1016/j.molstruc.2022.134000
  • Fair, R. J., & Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry, 6, PMC.S14459. https://doi.org/10.4137/PMC.S14459
  • Gupta, K., Sirbaiya, A. K., Kumar, V., & Rahman, M. A. (2022). Current perspective of synthesis of medicinally relevant benzothiazole based molecules: Potential for antimicrobial and anti-inflammatory activities. Mini Reviews in Medicinal Chemistry, 22(14), 1895–1935. https://doi.org/10.2174/1389557522666220217101805
  • Harrison, J. R., Brand, S., Smith, V., Robinson, D. A., Thompson, S., Smith, A., Davies, K., Mok, N., Torrie, L. S., Collie, I., Hallyburton, I., Norval, S., Simeons, F. R. C., Stojanovski, L., Frearson, J. A., Brenk, R., Wyatt, P. G., Gilbert, I. H., & Read, K. D. (2018). A molecular hybridization approach for the design of potent, highly selective, and brain-penetrant N-myristoyltransferase inhibitors. Journal of Medicinal Chemistry, 61(18), 8374–8389. https://doi.org/10.1021/acs.jmedchem.8b00884
  • Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S. M., Nocentini, A., Alissa, S. A., & Supuran, C. T. (2020). Benzothiazole derivatives as anticancer agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 265–279. https://doi.org/10.1080/14756366.2019.1698036
  • Jain, S., Jain, P. K., Sain, S., Kishore, D., & Dwivedi, J. (2020). Anticancer s-triazine derivatives: A synthetic attribute. Mini-Reviews in Organic Chemistry, 17(8), 904–921. https://doi.org/10.2174/1570193X17666200131111851
  • Kale, A., Kakde, R., Pawar, S., & Thombare, R. (2021). Recent development in substituted benzothiazole as an anticonvulsant agent. Mini Reviews in Medicinal Chemistry, 21(8), 1017–1024. https://doi.org/10.2174/1389557521666201222145236
  • Kalita, J. M., Ghosh, S. K., Sahu, S., & Dutta, M. (2017). Rational design and microwave assisted synthesis of some novel phenyl thiazolyl clubbed s-triazine derivatives as antimalarial antifolate. Future Journal of Pharmaceutical Sciences, 3(1), 11–17. https://doi.org/10.1016/j.fjps.2016.09.004
  • Karcz, D., Starzak, K., Ciszkowicz, E., Lecka-Szlachta, K., Kamiński, D., Creaven, B., Miłoś, A., Jenkins, H., Ślusarczyk, L., & Matwijczuk, A. (2022). Design, spectroscopy, and assessment of cholinesterase inhibition and antimicrobial activities of novel coumarin–thiadiazole hybrids. International Journal of Molecular Sciences, 23(11), 6314. https://doi.org/10.3390/ijms23116314
  • Karimian, S., Shekouhy, M., Pirhadi, S., Iraji, A., Attarroshan, M., Edraki, N., & Khoshneviszadeh, M. (2022). Synthesis and biological evaluation of benzimidazoles/1,3,5-triazine-2,4-diamine hybrid compounds: A new class of multifunctional alzheimer targeting agents. New Journal of Chemistry, 46(32), 15567–15584. https://doi.org/10.1039/D2NJ00371F
  • Keri, R. S., Patil, M. R., Patil, S. A., & Budagumpi, S. (2015). A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. European Journal of Medicinal Chemistry, 89, 207–251. https://doi.org/10.1016/J.EJMECH.2014.10.059
  • Kharbanda, C., Alam, M. S., Hamid, H., Javed, K., Bano, S., Dhulap, A., Ali, Y., Nazreen, S., & Haider, S. (2014). Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 22(21), 5804–5812. https://doi.org/10.1016/J.BMC.2014.09.028
  • Koparde, S., Hosamani, K. M., Kulkarni, V., & Joshi, S. D. (2018). Synthesis of coumarin-piperazine derivatives as potent antimicrobial and anti-inflammatory agents, and molecular docking studies. Chemical Data Collections, 15-16, 197–206. https://doi.org/10.1016/j.cdc.2018.06.001
  • Kumar, S., Oh, J. M., Abdelgawad, M. A., Abourehab, M. A. S., Tengli, A. K., Singh, A. K., Ahmad, I., Patel, H., Mathew, B., & Kim, H. (2023). Design, synthesis, and biological evaluation of quinoline-based thiazole derivatives as anticancer agents. ACS Omega, 8(7), 6908–6917. https://doi.org/10.1021/acsomega.2c07694
  • Luongo, G., Avagyan, R., Hongyu, R., & Östman, C. (2016). The washout effect during laundry on benzothiazole, benzotriazole, quinoline, and their derivatives in clothing textiles. Environmental Science and Pollution Research International, 23(3), 2537–2548. https://doi.org/10.1007/S11356-015-5405-7
  • Malani, A., Makwana, A., Monapara, J., Ahmad, I., Patel, H., & Desai, N. (2021). Synthesis, molecular docking, DFT study, and in vitro antimicrobial activity of some 4-(biphenyl-4-yl)-1,4-dihydropyridine and 4-(biphenyl-4-yl)pyridine derivatives. Journal of Biochemical and Molecular Toxicology, 35(11), e22903. https://doi.org/10.1002/JBT.22903
  • Marín-Ocampo, L., Veloza, L. A., Abonia, R., & Sepúlveda-Arias, J. C. (2019). Anti-inflammatory activity of triazine derivatives: A systematic review. European Journal of Medicinal Chemistry, 162, 435–447. https://doi.org/10.1016/J.EJMECH.2018.11.027
  • Mekheimer, R. A., Abuo-Rahma, G. E. D. A., Abd-Elmonem, M., Yahia, R., Hisham, M., Hayallah, A. M., Mostafa, S. M., Abo-Elsoud, F. A., & Sadek, K. U. (2022). New s-Triazine/Tetrazole conjugates as potent antifungal and antibacterial agents: Design, molecular docking and mechanistic study. Journal of Molecular Structure, 1267, 133615. https://doi.org/10.1016/j.molstruc.2022.133615
  • Mishra, S., Pandey, A., & Manvati, S. (2020). Coumarin: An emerging antiviral agent. Heliyon, 6(1), e03217. https://doi.org/10.1016/J.HELIYON.2020.E03217
  • Muddala, N. P., White, J. C., Nammalwar, B., Pratt, I., Thomas, L. M., Bunce, R. A., Berlin, K. D., & Bourne, C. R. (2020). Inhibitor design to target a unique feature in the folate pocket of Staphylococcus aureus dihydrofolate reductase. European Journal of Medicinal Chemistry, 200, 112412. https://doi.org/10.1016/J.EJMECH.2020.112412
  • Musa, M., Cooperwood, J., & Khan, M. O. (2008). A review of coumarin derivatives in pharmacotherapy of breast cancer. Current Medicinal Chemistry, 15(26), 2664–2679. https://doi.org/10.2174/092986708786242877
  • Naik, N. S., Shastri, L. A., Joshi, S. D., Dixit, S. R., Chougala, B. M., Samundeeswari, S., Holiyachi, M., Shaikh, F., Madar, J., Kulkarni, R., & Sunagar, V. (2017). 3,4-Dihydropyrimidinone-coumarin analogues as a new class of selective agent against S. aureus: Synthesis, biological evaluation and molecular modelling study. Bioorganic & Medicinal Chemistry, 25(4), 1413–1422. https://doi.org/10.1016/J.BMC.2017.01.001
  • Osmaniye, D., Ahmad, I., Sağlık, B. N., Levent, S., Patel, H. M., Ozkay, Y., & Kaplancıklı, Z. A. (2022). Design, synthesis and molecular docking and ADME studies of novel hydrazone derivatives for AChE inhibitory, BBB permeability and antioxidant effects. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2139762
  • Patel, A. B., Chikhalia, K. H., & Kumari, P. (2014a). Facile synthesis of benzonitrile/nicotinonitrile based s-triazines as new potential antimycobacterial agents. European Journal of Medicinal Chemistry, 79, 57–65. https://doi.org/10.1016/J.EJMECH.2014.03.085
  • Patel, A. B., Chikhalia, K. H., & Kumari, P. (2014b). An efficient synthesis of new thiazolidin-4-one fused s-triazines as potential antimicrobial and anticancer agents. Journal of Saudi Chemical Society, 18(5), 646–656. https://doi.org/10.1016/j.jscs.2014.02.002
  • Patel, R. v., Kumari, P., Rajani, D. P., & Chikhalia, K. H. (2011). Synthesis, characterization and pharmacological activities of 2-[4-cyano-(3-trifluoromethyl)phenyl amino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoropiperazinyl)-s-triazines. Journal of Fluorine Chemistry, 132(9), 617–627. https://doi.org/10.1016/j.jfluchem.2011.06.021
  • Patel, R. v., Kumari, P., Rajani, D. P., & Chikhalia, K. H. (2012). A new class of 2-(4-cyanophenyl amino)-4-(6-bromo-4-quinolinyloxy)-6- piperazinyl (piperidinyl)-1,3,5-triazine analogues with antimicrobial/antimycobacterial activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 27(3), 370–379. https://doi.org/10.3109/14756366.2011.592491
  • Paul, R. K., Ahmad, I., Patel, H., Kumar, V., & Raza, K. (2023). Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II diabetes mellitus: Inferences from in-silico investigations. Journal of Molecular Structure, 1271, 134045. https://doi.org/10.1016/j.molstruc.2022.134045
  • Pawara, R., Ahmad, I., Surana, S., & Patel, H. (2021). Computational identification of 2,4-disubstituted amino-pyrimidines as L858R/T790M-EGFR double mutant inhibitors using pharmacophore mapping, molecular docking, binding free energy calculation, DFT study and molecular dynamic simulation. In Silico Pharmacology, 9(1), 1–22. https://doi.org/10.1007/s40203-021-00113-x
  • Petruľová-Poracká, V., Repčák, M., Vilková, M., & Imrich, J. (2013). Coumarins of Matricaria chamomilla L.: Aglycones and glycosides. Food Chemistry, 141(1), 54–59. https://doi.org/10.1016/J.FOODCHEM.2013.03.004
  • Praveen, C., Nandakumar, A., Dheenkumar, P., Muralidharan, D., & Perumal, P. T. (2012). Microwave-assisted one-pot synthesis of benzothiazole and benzoxazole libraries as analgesic agents. Journal of Chemical Sciences, 124(3), 609–624. https://doi.org/10.1007/s12039-012-0251-3
  • Reddy, D. S., Kongot, M., & Kumar, A. (2021). Coumarin hybrid derivatives as promising leads to treat tuberculosis: Recent developments and critical aspects of structural design to exhibit antitubercular activity. Tuberculosis (Edinburgh, Scotland), 127, 102050. https://doi.org/10.1016/J.TUBE.2020.102050
  • Sahoo, C. R., Sahoo, J., Mahapatra, M., Lenka, D., Kumar Sahu, P., Dehury, B., Nath Padhy, R., & Kumar Paidesetty, S. (2021). Coumarin derivatives as promising antibacterial agent(s). Arabian Journal of Chemistry, 14(2), 102922. https://doi.org/10.1016/j.arabjc.2020.102922
  • Suhasaria, A., Satpati, S., Ghosal, S., Dey, S., & Sukul, D. (2023). Effect of the heterocyclic groups on the anti-corrosion performance of heterocyclic schiff bases of benzothiazole for mild steel in 1 M Aqueous HCl. Journal of Bio- and Tribo-Corrosion, 9(2), 1–19. https://doi.org/10.1007/S40735-023-00746-9/METRICS
  • Suntako, R. (2022). Rubber rail pad reinforced by modified silica using GPTMS and sulfenamide accelerator. Polymers, 14, 1767. https://doi.org/10.3390/polym
  • Tabti, K., Ahmad, I., Zafar, I., Sbai, A., Maghat, H., Bouachrine, M., & Lakhlifi, T. (2023). Profiling the Structural determinants of pyrrolidine derivative as gelatinases (MMP-2 and MMP-9) inhibitors using in silico approaches. Computational Biology and Chemistry, 104, 107855. https://doi.org/10.1016/j.compbiolchem.2023.107855
  • Xu, Z., Chen, Q., Zhang, Y., & Liang, C. (2021). Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia, 150, 104863. https://doi.org/10.1016/J.FITOTE.2021.104863
  • Yang, G., Shi, L., Pan, Z., Wu, L., Fan, L., Wang, C., Xu, C., & Liang, J. (2021). The synthesis of coumarin thiazoles containing a trifluoromethyl group and their antifungal activities. Arabian Journal of Chemistry, 14(1), 102880. https://doi.org/10.1016/j.arabjc.2020.10.027
  • Yildirim, M., Unal, Z. N., Ersatir, M., Yetkin, D., Degirmenci, U., & Giray, E. S. (2022). Anti-inflammatory effects of coumarin–selenophene derivatives on LPS-Stimulated RAW 264.7 macrophage cells. Russian Journal of Bioorganic Chemistry, 48(6), 1209–1214. https://doi.org/10.1134/S1068162022060279
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2023). Design, synthesis, molecular docking and in silico ADMET investigations of novel piperidine-bearing cinnamic acid hybrids as potent antimicrobial agents. Journal of the Iranian Chemical Society, 2023, 1–14. https://doi.org/10.1007/s13738-023-02801-1
  • Zala, A. R., Naik, H. N., Ahmad, I., Patel, H., Jauhari, S., & Kumari, P. (2023). Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD simulation, and their antidiabetic efficacy as α-Amylase inhibitors. Journal of Molecular Structure, 1285, 135493. https://doi.org/10.1016/j.molstruc.2023.135493
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022a). Design, synthesis, molecular docking and antimicrobial and antimycobacterial activities of novel hybrid of coumarin-cinnamic acids. Chemical Data Collections, 39, 100862. https://doi.org/10.1016/j.cdc.2022.100862
  • Zala, A. R., Rajani, D. P., & Kumari, P. (2022b). Synthesis, molecular docking, ADME study, and antimicrobial potency of piperazine based cinnamic acid bearing coumarin moieties as a DNA gyrase inhibitor. Journal of Biochemical and Molecular Toxicology, 37(1), e23231. https://doi.org/10.1002/jbt.23231
  • Zhang, L., & Xu, Z. (2019). Coumarin-containing hybrids and their anticancer activities. European Journal of Medicinal Chemistry, 181, 111587. https://doi.org/10.1016/J.EJMECH.2019.111587
  • Zhang, R., Zhao, S., Liu, X., Thomes, M. W., Bong, C. W., N. D., Samaraweera, D., Priyadarshana, T., Zhong, G., Li, J., & Zhang, G. (2022). Fates of Benzotriazoles, Benzothiazoles, and p-phenylenediamines in wastewater treatment plants in Malaysia and Sri Lanka. ACS ES and T Water, Aug 217, 215–222. https://doi.org/10.1021/acsestwater.2c00410
  • Zhao, H. N., Hu, X., Gonzalez, M., Rideout, C. A., Hobby, G. C., Fisher, M. F., McCormick, C. J., Dodd, M. C., Kim, K. E., Tian, Z., & Kolodziej, E. P. (2023). Screening p-Phenylenediamine antioxidants, their transformation products, and industrial chemical additives in crumb rubber and elastomeric consumer products. Environmental Science & Technology, 57(7), 2779–2791. https://doi.org/10.1021/acs.est.2c07014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.