176
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Systematic assessment of the flexibility of uracil damaged DNA

&
Pages 3958-3968 | Received 09 Mar 2023, Accepted 17 May 2023, Published online: 01 Jun 2023

References

  • Banavali, N. K., & MacKerell, A. D. (2002). Free energy and structural pathways of base flipping in a DNA GCGC containing sequence. Journal of Molecular Biology, 319(1), 141–160. https://doi.org/10.1016/S0022-2836(02)00194-8
  • Baumann, C. G., Smith, S. B., Bloomfield, V. A., & Bustamante, C. (1997). Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences of the United States of America, 94(12), 6185–6190. https://doi.org/10.1073/pnas.94.12.6185
  • Bellamy, S. R. W., & Baldwin, G. S. (2001). A kinetic analysis of substrate recognition by uracil-DNA glycosylase from herpes simplex virus type 1. Nucleic Acids Research, 29(18), 3857–3863. https://doi.org/10.1093/nar/29.18.3857
  • Beveridge, D. L., Barreiro, G., Byun, K. S., Case, D. A., Cheatham, T. E., Dixit, S. B., Giudice, E., Lankas, F., Lavery, R., Maddocks, J. H., Osman, R., Seibert, E., Sklenar, H., Stoll, G., Thayer, K. M., Varnai, P., & Young, M. A. (2004). Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. I. Research design and results on d(C(p)G) steps. Biophysical Journal, 87(6), 3799–3813. https://doi.org/10.1529/biophysj.104.045252
  • Beveridge, D. L., Cheatham, T. E., III, & Mezei, M. (2012). The ABCs of molecular dynamics simulations on B-DNA, circa 2012. Journal of Biosciences, 37(3), 379–397. https://doi.org/10.1007/s12038-012-9222-6
  • Bianchet, M. A., Seiple, L. A., Jiang, Y. L., Ichikawa, Y., Amzel, L. M., & Stivers, J. T. (2003). Electrostatic guidance of Glycosyl Cation migration along the reaction coordinate of uracil DNA glycosylase. Biochemistry, 42(43), 12455–12460. https://doi.org/10.1021/bi035372+
  • Brooks, S. C., Adhikary, S., Rubinson, E. H., & Eichman, B. F. (2013). Recent advances in the structural mechanisms of DNA glycosylases. Biochimica et Biophysica Acta, 1834(1), 247–271. https://doi.org/10.1016/j.bbapap.2012.10.005
  • Brunet, A., Tardin, C., Salomé, L., Rousseau, P., Destainville, N., & Manghi, M. (2015). Dependence of DNA persistence length on ionic strength of solutions with monovalent and divalent salts: A joint theory–experiment study. Macromolecules, 48(11), 3641–3652. https://doi.org/10.1021/acs.macromol.5b00735
  • Burmeister, W. P., Tarbouriech, N., Fender, P., Contesto-Richefeu, C., Peyrefitte, C. N., & Iseni, F. (2015). Crystal structure of the vaccinia virus uracil-DNA glycosylase in complex with DNA*. The Journal of Biological Chemistry, 290(29), 17923–17934. https://doi.org/10.1074/jbc.M115.648352
  • Bustamante, C., Bryant, Z., & Smith, S. B. (2003). Ten years of tension: Single-molecule DNA mechanics. Nature, 421(6921), 423–427. https://doi.org/10.1038/nature01405
  • Carbonnaux, C., Fazakerley, G. V., & Sowers, L. C. (1990). An NMR structural study of deaminated base-pairs in DNA. Nucleic Acids Research, 18(14), 4075–4081. https://doi.org/10.1093/nar/18.14.4075
  • Case, D. A., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. D. W., Darden, T.A., Duke, R.E., Ghoreishi, D., Gilson, M.K., Gohlke, H., Goetz, A.W., Greene, D., Harris, R., Homeyer, N., Huang, Y., Izadi, S., Kovalenko, A., Kurtzman, T. … Kollman, P. A. (2018). AMBER 2018. University of California.
  • Chhetri, K. B., Sharma, A., Naskar, S., & Maiti, P. K. (2022). Nanoscale structures and mechanics of peptide nucleic acids. Nanoscale, 14(17), 6620–6635. https://doi.org/10.1039/D1NR04239D
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N ⋅log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Dixit, S. B., Beveridge, D. L., Case, D. A., Cheatham, T. E., Giudice, E., Lankas, F., Lavery, R., Maddocks, J. H., Osman, R., Sklenar, H., Thayer, K. M., & Varnai, P. (2005). Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: Sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophysical Journal, 89(6), 3721–3740. https://doi.org/10.1529/biophysj.105.067397
  • Earl, C., Bagnéris, C., Zeman, K., Cole, A., Barrett, T., & Savva, R. (2018). A structurally conserved motif in γ-herpesvirus uracil-DNA glycosylases elicits duplex nucleotide-flipping. Nucleic Acids Research, 46(8), 4286–4300. https://doi.org/10.1093/nar/gky217
  • Eastman, P., Swails, J., Chodera, J. D., McGibbon, R. T., Zhao, Y., Beauchamp, K. A., Wang, L.-P., Simmonett, A. C., Harrigan, M. P., Stern, C. D., Wiewiora, R. P., Brooks, B. R., & Pande, V. S. (2017). OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology, 13(7), e1005659. https://doi.org/10.1371/journal.pcbi.1005659
  • Eftedal, I., Guddal, P. H., Slupphaug, G., Volden, G., & Krokan, H. E. (1993). Consensus sequences for good and poor removal of uracil from double-stranded DNA by uracil-DNA glycosylase. Nucleic Acids Research, 21(9), 2095–2101. https://doi.org/10.1093/nar/21.9.2095
  • Fadda, E., & Pomès, R. (2011). On the molecular basis of uracil recognition in DNA: Comparative study of T-A versus U-A structure, dynamics and open base pair kinetics. Nucleic Acids Research, 39(2), 767–780. https://doi.org/10.1093/nar/gkq812
  • Franco, D., Sgrignani, J., Bussi, G., & Magistrato, A. (2013). Structural role of uracil DNA glycosylase for the recognition of uracil in DNA duplexes. Clues from atomistic simulations. Journal of Chemical Information and Modeling, 53(6), 1371–1387. https://doi.org/10.1021/ci4001647
  • Fuxreiter, M., Luo, N., Jedlovszky, P., Simon, I., & Osman, R. (2002). Role of base flipping in specific recognition of damaged DNA by repair enzymes. Journal of Molecular Biology, 323(5), 823–834. https://doi.org/10.1016/S0022-2836(02)00999-3
  • Galindo-Murillo, R., Robertson, J. C., Zgarbová, M., Šponer, J., Otyepka, M., Jurečka, P., & Cheatham, T. E. (2016). Assessing the current state of amber force field modifications for DNA. Journal of Chemical Theory and Computation, 12(8), 4114–4127. https://doi.org/10.1021/acs.jctc.6b00186
  • Hagerman, P. J. (1988). Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, 17, 265–286. https://doi.org/10.1146/annurev.bb.17.060188.001405
  • Herrero-Galán, E., Fuentes-Perez, M. E., Carrasco, C., Valpuesta, J. M., Carrascosa, J. L., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2013). Mechanical identities of RNA and DNA double helices unveiled at the single-molecule level. Journal of the American Chemical Society, 135(1), 122–131. https://doi.org/10.1021/ja3054755
  • Hoeijmakers, J. H. J. (2009). Molecular origins of cancer DNA damage, aging, and cancer. The New England Journal of Medicine, 361(15), 1475–1485. https://doi.org/10.1056/NEJMra0804615
  • Hölz, K., Pavlic, A., Lietard, J., & Somoza, M. M. (2019). Specificity and efficiency of the uracil DNA glycosylase-mediated strand cleavage surveyed on large sequence libraries. Scientific Reports, 9(1), 17822. https://doi.org/10.1038/s41598-019-54044-x
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kosaka, H., Hoseki, J., Nakagawa, N., Kuramitsu, S., & Masui, R. (2007). Crystal structure of family 5 uracil-DNA glycosylase bound to DNA. Journal of Molecular Biology, 373(4), 839–850. https://doi.org/10.1016/j.jmb.2007.08.022
  • Kosaka, H., Nakagawa, N., Masui, R., Kuramitsu, S., & Hoseki, J. (2007). Crystal structure of uracil-DNA glycosylase in complex with AP:C containing DNA. RIKEN Structural Genomics/Proteomics Initiative (RSGI). https://doi.org/10.2210/pdb2dp6/pdb
  • Krokan, H. E., Drablos, F., & Slupphaug, G. (2002). Uracil in DNA–occurrence, consequences and repair. Oncogene, 21(58), 8935–8948. https://doi.org/10.1038/sj.onc.1205996
  • Lavery, R., Zakrzewska, K., Beveridge, D., Bishop, T. C., Case, D. A., Cheatham, T., Dixit, S., Jayaram, B., Lankas, F., Laughton, C., Maddocks, J. H., Michon, A., Osman, R., Orozco, M., Perez, A., Singh, T., Spackova, N., & Sponer, J. (2010). A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA. Nucleic Acids Research, 38(1), 299–313. https://doi.org/10.1093/nar/gkp834
  • Lipfert, J., Kerssemakers, J. W. J., Jager, T., & Dekker, N. H. (2010). Magnetic torque tweezers: Measuring torsional stiffness in DNA and RecA-DNA filaments. Nature Methods, 7(12), 977–980. https://doi.org/10.1038/nmeth.1520
  • Lu, X.-J., & Olson, W. K. (2008). 3DNA: A versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nature Protocols, 3(7), 1213–1227. https://doi.org/10.1038/nprot.2008.104
  • Lu, Y., Weers, B., & Stellwagen, N. C. (2002). DNA persistence length revisited. Biopolymers, 61(4), 261–275. https://doi.org/10.1002/bip.10151
  • Ma, N., & van der Vaart, A. (2016). Anisotropy of B-DNA groove bending. Journal of the American Chemical Society, 138(31), 9951–9958. https://doi.org/10.1021/jacs.6b05136
  • Ma, N., & van der Vaart, A. (2017a). Free energy coupling between DNA bending and base flipping. Journal of Chemical Information and Modeling, 57(8), 2020–2026. https://doi.org/10.1021/acs.jcim.7b00215
  • Ma, N., & van der Vaart, A. (2017b). KCI dependence of B-DNA groove bending anisotropy. The Journal of Physical Chemistry. B, 121(21), 5322–5330. https://doi.org/10.1021/acs.jpcb.7b01957
  • Mardt, A., Gorriz, R. F., Ferraro, F., Ulrich, P., Zahran, M., & Imhof, P. (2022). Effect of a U:G mispair on the water around DNA. Biophysical Chemistry, 283, 106779. https://doi.org/10.1016/j.bpc.2022.106779
  • Marin-Gonzalez, A., Vilhena, J. G., Perez, R., & Moreno-Herrero, F. (2021). A molecular view of DNA flexibility. Quarterly Reviews of Biophysics, 54, e8, 1-20. https://doi.org/10.1017/S0033583521000068
  • Mazur, A. K. (2007). Wormlike chain theory and bending of short DNA. Physical Review Letters, 98(21), 218102. https://doi.org/10.1103/PhysRevLett.98.218102
  • Nilsen, H., Yazdankhah, S. P., Eftedal, I., & Krokan, H. E. (1995). Sequence specificity for removal of uracil from U-center-dot-A pairs and U-center-dot-G mismatches by uracil-DNA glycosylase from Escherichia-coli, and correlation with mutational hotspots. FEBS Letters, 362(2), 205–209. https://doi.org/10.1016/0014-5793(95)00244-4
  • Orndorff, P. B., Poddar, S., Owens, A. M., Kumari, N., Ugaz, B. T., Amin, S., Van Horn, W. D., van der Vaart, A., & Levitus, M. (2023). Uracil-DNA glycosylase efficiency is modulated by substrate rigidity. Scientific Reports, 13(1), 3915. https://doi.org/10.1038/s41598-023-30620-0
  • Panayotou, G., Brown, T., Barlow, T., Pearl, L. H., & Savva, R. (1998). Direct measurement of the substrate preference of uracil-DNA glycosylase. The Journal of Biological Chemistry, 273(1), 45–50. https://doi.org/10.1074/jbc.273.1.45
  • Parikh, S. S., Mol, C. D., Slupphaug, G., Bharati, S., Krokan, H. E., & Tainer, J. A. (1998). Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. The EMBO Journal, 17(17), 5214–5226. https://doi.org/10.1093/emboj/17.17.5214
  • Parikh, S. S., Walcher, G., Jones, G. D., Slupphaug, G., Krokan, H. E., Blackburn, G. M., & Tainer, J. A. (2000). Uracil-DNA glycosylase–DNA substrate and product structures: Conformational strain promotes catalytic efficiency by coupled stereoelectronic effects. Proceedings of the National Academy of Sciences of the United States of America, 97(10), 5083–5088. https://doi.org/10.1073/pnas.97.10.5083
  • Parker, J. B., & Stivers, J. T. (2011). Dynamics of uracil and 5-fluorouracil in DNA. Biochemistry, 50(5), 612–617. https://doi.org/10.1021/bi101536k
  • Parker, J. B., Bianchet, M. A., Krosky, D. J., Friedman, J. I., Amzel, L. M., & Stivers, J. T. (2007). Enzymatic capture of an extrahelical thymine in the search for uracil in DNA. Nature, 449(7161), 433–437. https://doi.org/10.1038/nature06131
  • Pedersen, H. L., Johnson, K. A., McVey, C. E., Leiros, I., & Moe, E. (2015). Structure determination of uracil-DNA N-glycosylase from Deinococcus radiodurans in complex with DNA. Acta Crystallographica. Section D, Biological Crystallography, 71(Pt 10), 2137–2149. https://doi.org/10.1107/S1399004715014157
  • Peguero-Tejada, A., & van der Vaart, A. (2017). Biasing simulations of DNA base pair parameters with application to propellor twisting in AT/AT, AA/TT, and AC/GT steps and their uracil analogs. Journal of Chemical Information and Modeling, 57(1), 85–92. https://doi.org/10.1021/acs.jcim.6b00660
  • Peters, J. P., & Maher, L. J. (2010). DNA curvature and flexibility in vitro and in vivo. Quarterly Reviews of Biophysics, 43(1), 23–63. https://doi.org/10.1017/s0033583510000077
  • Priyakumar, U. D., & MacKerell, A. D. (2006). Computational approaches for investigating base flipping in oligonucleotides. Chemical Reviews, 106(2), 489–505. https://doi.org/10.1021/cr040475z
  • Ramstein, J., & Lavery, R. (1988). Energetic coupling between DNA bending and base pair opening. Proceedings of the National Academy of Sciences of the United States of America, 85(19), 7231–7235. https://doi.org/10.1073/pnas.85.19.7231
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. (1977). Numerical-integration of Cartesian equations of motion of a system with constraints – molecular-dynamics of N-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Seibert, E., Ross, J. B. A., & Osman, R. (2003). Contribution of opening and bending dynamics to specific recognition of DNA damage. Journal of Molecular Biology, 330(4), 687–703. https://doi.org/10.1016/S0022-2836(03)00598-9
  • Shirts, M. R., & Chodera, J. D. (2008). Statistically optimal analysis of samples from multiple equilibrium states. The Journal of Chemical Physics, 129(12), 124105–124105. https://doi.org/10.1063/1.2978177
  • Slupphaug, G., Eftedal, I., Kavli, B., Bharati, S., Helle, N. M., Haug, T., Levine, D. W., & Krokan, H. E. (1995). Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry, 34(1), 128–138. https://doi.org/10.1021/bi00001a016
  • Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E., & Tainer, J. A. (1996). A nucleotide-flipping mechanism from the structure of human uracil–DNA glycosylase bound to DNA. Nature, 384(6604), 87–92. https://doi.org/10.1038/384087a0
  • Stivers, J. T., & Jiang, Y. L. (2003). A mechanistic perspective on the chemistry of DNA repair glycosylases. Chemical Reviews, 103(7), 2729–2759. https://doi.org/10.1021/cr010219b
  • Stivers, J. T., Pankiewicz, K. W., & Watanabe, K. A. (1999). Kinetic mechanism of damage site recognition and uracil flipping by Escherichia coli uracil DNA glycosylase. Biochemistry, 38(3), 952–963. https://doi.org/10.1021/bi9818669
  • Torrie, G. M., & Valleau, J. P. (1977). Non-physical sampling distributions in Monte-Carlo free-energy estimation - Umbrella sampling. Journal of Computational Physics, 23(2), 187–199. https://doi.org/10.1016/0021-9991(77)90121-8
  • Velasco-Berrelleza, V., Burman, M., Shepherd, J., Leake, M., Golestanian, R., & Noy, A. (2020). SerraNA: A program to determine nucleic acids elasticity from simulation data. Physical Chemistry Chemical Physics, 22(34), 19254–19266. https://doi.org/10.1039/D0CP02713H
  • Visnes, T., Doseth, B., Pettersen, H. S., Hagen, L., Sousa, M. M. L., Akbari, M., Otterlei, M., Kavli, B., Slupphaug, G., & Krokan, H. E. (2009). Uracil in DNA and its processing by different DNA glycosylases. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1517), 563–568. https://doi.org/10.1098/rstb.2008.0186
  • Williams, J. S., Lujan, S. A., & Kunkel, T. A. (2016). Processing ribonucleotides incorporated during eukaryotic DNA replication. Nature Reviews. Molecular Cell Biology, 17(6), 350–363. https://doi.org/10.1038/nrm.2016.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.