161
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Investigation of new 1,2,3-triazolyl-quinolinyl-propan-2-ol derivatives as potential antimicrobial agents: in vitro and in silico approach

, , , , , ORCID Icon, , & show all
Pages 1191-1207 | Received 02 Feb 2023, Accepted 28 Mar 2023, Published online: 30 May 2023

References

  • Agalave, S. G., Maujan, S., & Pore, V. S. (2011). Click chemistry: 1,2,3-triazoles as pharmacophores. Chemistry, an Asian Journal, 6(10), 2696–2718. https://doi.org/10.1002/asia.201100432
  • Ahmad, I., Akand, S. R., Shaikh, M., Pawara, R., Manjula, S. N., & Patel, H. (2022). Synthesis, molecular modelling study of the methaqualone analogues as anti-convulsant agent with improved cognition activity and minimized neurotoxicity. Journal of Molecular Structure, 1251, 131972. https://doi.org/10.1016/j.molstruc.2021.131972
  • Al-Blewi, F. F., Almehmadi, M. A., Aouad, M. R., Bardaweel, S. K., Sahu, P. K., Messali, M., Rezki, N., & El Ashry, E. S. H. (2018). Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chemistry Central Journal. 12(1), 14. https://doi.org/10.1186/s13065-018-0479-1
  • Aljuhani, A., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Turkistani, S. A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., & Abulkhair, H. S. (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-M Pro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/d2ra04015h
  • Avula, S. K., Shah, S. R., Al-Hosni, K., Anwar, M. U., Csuk, R., Das, B., & Al-Harrasi, A. (2021). Synthesis and antimicrobial activity of 1H-1,2,3-triazole and carboxylate analogues of metronidazole. Beilstein Journal of Organic Chemistry, 17, 2377–2384. https://doi.org/10.3762/bjoc.17.154
  • Ayati, A., Emami, S., Asadipour, A., Shafiee, A., & Foroumadi, A. (2015). Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. European Journal of Medicinal Chemistry. 97, 699–718. https://doi.org/10.1016/j.ejmech.2015.04.015
  • Ayipo, Y. O., Yahaya, S., Babamale, H. F., Ahmad, I., Patel, H., & Mordi, M. N. (2021). ß-Carboline alkaloids induce structural plasticity and inhibition of SARS-CoV-2 nsp3 macrodomain more potently than remdesivir metabolite GS-441524: Computational approach. Turkish Journal of Biology = Turk Biyoloji Dergisi, 45(4), 503–517. https://doi.org/10.3906/biy-2106-64
  • Ayipo, Y. O., Alananzeh, W. A., Ahmad, I., Patel, H., & Mordi, M. N. (2022). Structural modelling and in silico pharmacology of β-carboline alkaloids as potent 5-HT1A receptor antagonists and reuptake inhibitors. Journal of Biomolecular Structure and Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2104376
  • Bald, D., Villellas, C., Lu, P., & Koul, A. (2017). Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery. mBio, 8(2), 1–11. https://doi.org/10.1128/mBio.00272-17
  • Bhattacharjee, P., Rutland, N., & Iyer, M. R. (2022). Targeting sterol O-acyltransferase/acyl-CoA: cholesterol acyltransferase (ACAT): A perspective on small-molecule inhibitors and their therapeutic potential. Journal of Medicinal Chemistry, 65(24), 16062–16098. https://doi.org/10.1021/acs.jmedchem.2c01265
  • Bush, N. G., Diez-Santos, I., Abbott, L. R., & Maxwell, A. (2020). Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules, 25(23), 5662. https://doi.org/10.3390/molecules25235662
  • Chokkar, N., Kalra, S., Chauhan, M., & Kumar, R. (2019). A review on quinoline derived scaffolds as anti-HIV agents. Mini Reviews in Medicinal Chemistry, 19(6), 510–526. https://doi.org/10.2174/1389557518666181018163448
  • Da Rosa, M. M. G., Diedrich, D., Ruaro, T. C., Zimmer, A. R., Lettieri, T. M., de Oliveira, L. F., Jean, M., Van de Weghe, P., de Andrade, S. F., Baggio Gnoatto, S. C., & Fuentefria, A. M. (2020). Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Brazilian Journal of Microbiology: Publication of the Brazilian Society for Microbiology, 51(4), 1691–1701. https://doi.org/10.1007/s42770-020-00348-4
  • Da Silva, N. M., Gentz, C. D. B., Reginatto, P., Fernandes, T. H. M. I., Kaminski, T. F. A., Lopes, W., Quatrin, P. M., Vainstein, M. H., Abegg, M. A., Lopes, M. S., Fuentefria, A. M., & De Andrade, S. F. (2021). 8-Hydroxyquinoline 1,2,3-triazole derivatives with promising and selective antifungal activity. Medical Mycology, 59(5), 431–440. https://doi.org/10.1093/mmy/myaa061
  • Dheda, K., Barry, C. E., & Maartens, G. (2016). Tuberculosis. Lancet (London, England), 387(10024), 1211–1226. https://doi.org/10.1016/S0140-6736(15)00151-8
  • Dorababu, A. (2021). Recent update on antibacterial and antifungal activity of quinoline scaffolds. Archiv Der Pharmazie, 354(3), 2000232. https://doi.org/10.1002/ardp.202000232
  • Faidallah, H. M., Panda, S. S., Serrano, J. C., Girgis, A. S., Khan, K. A., Alamry, K. A., Therathanakorn, T., Meyers, M. J., Sverdrup, F. M., Eickhoff, C. S., Getchell, S. G., & Katritzky, A. R. (2016). Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates. Bioorganic & Medicinal Chemistry, 24(16), 3527–3539. https://doi.org/10.1016/j.bmc.2016.05.060
  • Farhan, M. M., Guma, M. A., Rabeea, M. A., Ahmad, I., & Patel, H. (2022). Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. Journal of Molecular Structure, 1269, 133781. https://doi.org/10.1016/j.molstruc.2022.133781
  • Ferlin, M. G., Gatto, B., Chiarelotto, G., & Palumbo, M. (2000). Pyrrolo-quinoline derivatives as potential antineoplastic drugs. Bioorganic & Medicinal Chemistry, 8(6), 1415–1422. https://doi.org/10.1016/S0968-0896(00)00060-2
  • Ferroni, C., Pepe, A., Kim, Y. S., Lee, S., Guerrini, A., Parenti, M. D., Tesei, A., Zamagni, A., Cortesi, M., Zaffaroni, N., Cesare, M. D., Beretta, G. L., Trepel, J. B., Malhotra, S. V., & Varchi, G. (2017). 1,4-substituted triazoles as nonsteroidal anti-androgens for prostate cancer treatment. Journal of Medicinal Chemistry, 60(7), 3082–3093. https://doi.org/10.1021/acs.jmedchem.7b00105
  • Franzblau, S. G., Witzig, R. S., McLaughlin, J. C., Torres, P., Madico, G., Hernandez, A., Degnan, M. T., Cook, M. B., Quenzer, V. K., Ferguson, R. M., & Gilman, R. H. (1998). Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. Journal of Clinical Microbiology, 36(2), 362–366. https://doi.org/10.1128/JCM.36.2.362-366.1998
  • Fu, N., Wang, S., Zhang, Y., Zhang, C., Yang, D., Weng, L., Zhao, B., & Wang, L. (2017). Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans. European Journal of Medicinal Chemistry, 136, 596–602. https://doi.org/10.1016/j.ejmech.2017.05.001
  • Global tuberculosis report. (2020). Geneva: World Health Organization; 2020. License: CC BY-NC-SA 3.0 IGO. Retrieved January 14, 2023, from https://www.who.int/publications/i/item/9789240013131
  • Global tuberculosis report. (2021). Geneva: World Health Organization; 2021. License: CC BY-NC-SA 3.0 IGO. Retrieved January 14, 2023, from https://www.who.int/publications/i/item/9789240037021. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021
  • González-Calderón, D., Mejía-Dionicio, M. G., Morales-Reza, M. A., Ramírez-Villalva, A., Morales-Rodríguez, M., Jauregui-Rodríguez, B., Díaz-Torres, E., González-Romero, C., & Fuentes-Benítes, A. (2016). Azide-enolate 1,3-dipolar cycloaddition in the synthesis of novel triazole-based miconazole analogues as promising antifungal agents. European Journal of Medicinal Chemistry, 112, 60–65. https://doi.org/10.1016/j.ejmech.2016.02.013
  • Hooper, D. C., & Jacoby, G. A. (2016). Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, 6(9), a025320. https://doi.org/10.1101/cshperspect.a025320
  • Ilakiyalakshmi, M., & Napoleon, A. A. (2022). Review on recent development of quinoline for anticancer activities. Arabian Journal of Chemistry. 15(11), 104168. https://doi.org/10.1016/j.arabjc.2022.104168
  • Irfan, M., Alam, S., Manzoor, N., & Abid, M. (2017). Effect of quinoline based 1,2,3-triazole and its structural analogues on growth and virulence attributes of Candida albicans. Plos One, 12(4), e0175710. https://doi.org/10.1371/journal.pone.0175710
  • Islamuddin, M., Afzal, O., Khan, W. H., Hisamuddin, M., Altamimi, A. S. A., Husain, I., Kato, K., Alamri, M. A., & Parveen, S. (2021). Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1H)-one (QVIR) Targeting nsP2 and E2 Proteins. ACS Omega, 6(14), 9791–9803. https://doi.org/10.1021/acsomega.1c00447
  • Joshi, A. B., Mali, M., & Kulkarni, V. (2015). Phytochemical screening and antimicrobial activity of stevia rebaudiana leaves. International Journal of Current Microbiology and Applied Sciences, 4, 678–685.
  • Kaur, B., Rajan, R., Salaria, D., Kumar, B., Fadare, O., Araujo da Costa, R., Ahmad, A., Al-Rawi, M. B. A., Raish, M., & Rather, I. A. (2022). An in silico investigation to explore anti-cancer potential of Foeniculum vulgare Mill. Phytoconstituents for the management of human breast cancer. Molecules, 27(13), 4077. https://doi.org/10.3390/molecules27134077
  • Kaur, R., & Kumar, K. (2021). Synthetic and medicinal perspective of quinolines as antiviral agents. European Journal of Medicinal Chemistry, 215, 113220. https://doi.org/10.1016/j.ejmech.2021.113220
  • Keri, R. S., & Patil, S. A. (2014). Quinoline: A promising antitubercular target. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 68(8), 1161–1175. https://doi.org/10.1016/j.biopha.2014.10.007
  • Kettle, J. G., Anjum, R., Barry, E., Bhavsar, D., Brown, C., Boyd, S., Campbell, A., Goldberg, K., Grondine, M., Guichard, S., Hardy, C., Hunt, T., Jones, R., Li, X., Moleva, O., Ogg, D., Overman, R. C., Packer, M. J., Pearson, S., … Ye, Y. (2018). Discovery of N-(4-{[5-Fluoro-7-(2-methoxyethoxy)quinazolin-4-yl]amino}phenyl)-2-[4-(propan-2-yl)-1H-1,2,3-triazol-1-yl]acetamide (AZD3229), a Potent Pan-KIT Mutant Inhibitor for the Treatment of Gastrointestinal Stromal Tumors. Journal of Medicinal Chemistry, 61(19), 8797–8810. https://doi.org/10.1021/acs.jmedchem.8b00938
  • Khan, T., Sankhe, K., Suvarna, V., Sherje, A., Patel, K., & Dravyakar, B. (2018). DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 103, 923–938. https://doi.org/10.1016/j.biopha.2018.04.021
  • Kikiowo, B., Ahmad, I., Alade, A. A., Ijatuyi, T. T., Iwaloye, O., & Patel, H. M. (2022). Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. Journal of Biomolecular Structure and Dynamics, 1–8. Ahead of print. https://doi.org/10.1080/07391102.2022.2155699
  • Kucharski, D. J., Jaszczak, M. K., & Boratyński, P. J. (2022). A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)chloroquine. Molecules, 27(3), 1003. https://doi.org/10.3390/molecules27031003
  • Kumar, S., Khokra, S. L., & Yadav, A. (2021). Triazole analogues as potential pharmacological agents: A brief review. Future Journal of Pharmaceutical Sciences, 7(1), 22. https://doi.org/10.1186/s43094-021-00241-3
  • Lilienkampf, A., Pieroni, M., Franzblau, S. G., Bishai, W. R., & Kozikowski, A. P. (2012). Derivatives of 3-isoxazolecarboxylic acid esters – A potent and selective compound class against replicating and nonreplicating Mycobacterium tuberculosis. Current Topics in Medicinal Chemistry, 12(7), 729–734. https://doi.org/10.2174/156802612799984544
  • Lourenço, M. C. S., de Souza, M. V. N., Pinheiro, A. C., De. Ferreira, L. M., Gonçalves, R. S. B., Nogueira, T. C. M., & Peralta, M. A. (2007). Evaluation of anti-Tubercular activity of nicotinic and isoniazid analogs. Arkivoc, 2007(15), 181–191. xv, https://doi.org/10.3998/ark.5550190.0008.f18
  • Mabhula, A., & Singh, V. (2019). Drug-resistance in Mycobacterium tuberculosis: Where we stand. MedChemComm, 10(8), 1342–1360. https://doi.org/10.1039/C9MD00057G
  • Madasu, C., Karri, S., Sangaraju, R., Sistla, R., & Uppuluri, M. V. (2020). Synthesis and biological evaluation of some novel 1,2,3-triazole hybrids of myrrhanone B isolated from Commiphora mukul gum resin: Identification of potent antiproliferative leads active against prostate cancer cells (PC-3). European Journal of Medicinal Chemistry, 188, 111974. https://doi.org/10.1016/j.ejmech.2019.111974
  • Mall, S., Srivastava, R., Sharma, N., Patel, C. N., Rolta, R., Sourirajan, A., Dev, K., Ghosh, A., & Kumar, V. (2022). Antihypertensive activity of phytocompounds from selected medicinal plants via inhibition of angiotensin-converting enzyme (ACE) protein: An in-silico approach. Natural Product Research, 36(17), 4526–4529. https://doi.org/10.1080/14786419.2021.1990917
  • Marvadi, S., Krishna, V., Sriram, D., & Kantevari, S. (2019). Synthesis and evaluation of novel substituted 1,2,3-triazolyldihydroquinolines as promising antitubercular agents. Bioorganic & Medicinal Chemistry Letters, 29(4), 529–533. https://doi.org/10.1016/j.bmcl.2019.01.004
  • Mhaske, P., Thakare, P., Shinde, A., & Chavan, A. (2021). Antimicrobial derivatives of substituted quinoline and method of manufacturing the same, IN202121016860 A, 2021.
  • Mohamed, M. F. A., & Abuo-Rahma, G. E. A. (2020). Molecular targets and anticancer activity of quinoline–chalcone hybrids: Literature review. RSC Advances, 10(52), 31139–31155. https://doi.org/10.1039/D0RA05594H
  • Muhammad, Z., Skagseth, S., Boomgaren, M., Akhter, S., Fröhlich, C., Ismael, A., Christopeit, T., Bayer, A., & Leiros, H. S. (2020). Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Bioorganic & Medicinal Chemistry, 28(15), 115598. https://doi.org/10.1016/j.bmc.2020.115598
  • NCCLS (National Committee for Clinical Laboratory Standards) method for dilution antimicrobial susceptibility tests of bacteria that grow aerobically, Approv. Stand (2002). P. A. Wayne, M100–S12.
  • Nguyen, L. (2016). Antibiotic resistance mechanisms in M. tuberculosis: An update. Archives of Toxicology, 90(7), 1585–1604. https://doi.org/10.1007/s00204-016-1727-6
  • Ni, T., Xie, F., Hao, Y., Li, L., Zhu, S., Wu, H., Chi, X., Yan, L., Jiang, Y., & Zhang, D. (2022). Discovery of novel orally bioavailable triazoles with potent and broad-spectrum antifungal activity in vitro and in vivo. Journal of Medicinal Chemistry, 65(24), 16665–16678. https://doi.org/10.1021/acs.jmedchem.2c01497
  • Noumi, E., Ahmad, I., Bouali, N., Patel, H., Ghannay, S., ALrashidi, A. A., Abdulhakeem, M. A., Patel, M., Ceylan, O., Badraoui, R., Mousa Elayyan, A. E., Adnan, M., Kadri, A., & Snoussi, M. (2022). Methanolic extract: In vitro and in silico screening of its antimicrobial, antioxidant, anti-quorum sensing, antibiofilm, and anticancer activities. Life, 13(1), 62. https://doi.org/10.3390/life13010062
  • Osmaniye, D., Karaca, Ş., Kurban, B., Baysal, M., Ahmad, I., Patel, H., Özkay, Y., & Asım Kaplancıklı, Z. (2022). Design, synthesis, molecular docking and molecular dynamics studies of novel triazolothiadiazine derivatives containing furan or thiophene rings as anticancer agents. Bioorganic Chemistry, 122, 105709. https://doi.org/10.1016/j.bioorg.2022.105709
  • Palomino, J. C., & Martin, A. (2013). TMC207 becomes bedaquiline, a new anti-TB drug. Future Microbiology, 8(9), 1071–1080. https://doi.org/10.2217/fmb.13.85
  • Pandey, R., Dubey, I., Ahmad, I., Mahapatra, D. K., Patel, H., & Kumar, P. (2022). In silico study of some dexamethasone analogs and derivatives against SARs-CoV-2 target: A cost-effective alternative to remdesivir for various COVID phases. Current Chinese Science, 2(4), 294–309. https://doi.org/10.2174/2210298102666220404102217
  • Patel, K. B., Mukherjee, S., Bhatt, H., Rajani, D., Ahmad, I., Patel, H., & Kumari, P. (2023). Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. Journal of Molecular Structure, 1276, 134755. https://doi.org/10.1016/j.molstruc.2022.134755
  • Paul, R. K., Ahmad, I., Patel, H., Kumar, V., & Raza, K. (2023). Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II diabetes mellitus: Inferences from in-silico investigations. Journal of Molecular Structure, 1271, 134045. https://doi.org/10.1016/j.molstruc.2022.134045
  • Peng, X. M., Peng, L. P., Li, S., Avula, S. R., Kannekanti, V. K., Zhang, S. L., Tam, K. Y., & Zhou, C. H. (2016). Quinazolinone azolyl ethanols: Potential lead antimicrobial agents with dual action modes targeting MRSA DNA. Future Medicinal Chemistry. 8(16), 1927–1940. https://doi.org/10.4155/fmc-2016-0002
  • Pham, T. D. M., Ziora, Z. M., & Blaskovich, M. A. T. (2019). Quinolone antibiotics. Medchemcomm., 10(10), 1719–1739. https://doi.org/10.1039/c9md00120d
  • Ramprasad, J., Kumar Sthalam, V., Thampunuri, R. L. M., Bhukya, S., Ummanni, R., Balasubramanian, S., & Pabbaraja, S. (2019). Synthesis and evaluation of a novel quinoline-triazole analogs for antitubercular properties via molecular hybridization approach. Bioorganic & Medicinal Chemistry Letters, 29(20), Article 126671. https://doi.org/10.1016/j.bmcl.2019.126671
  • Saikrishna, B., MeenaKumari, K., Vijjulatha, M., Devi Allanki, A., Prasad, R., & Singh, S. P. (2017). Synthesis and evaluation of naphthyl bearing 1,2,3-triazole analogs as antiplasmodial agents, cytotoxicity and docking studies. Bioorganic & Medicinal Chemistry, 25(1), 221–232. https://doi.org/10.1016/j.bmc.2016.10.029
  • Salaria, D., Rolta, R., Patel, C. N., Dev, K., Sourirajan, A., & Kumar, V. (2022). In vitro and in silico analysis of Thymus serpyllum essential oil as bioactivity enhancer of antibacterial and antifungal agents. Journal of Biomolecular Structure & Dynamics, 40(20), 10383–10402. https://doi.org/10.1080/07391102.2021.1943530
  • Serafini, M., Cordero-Sanchez, C., Di Paola, R., Bhela, I. P., Aprile, S., Purghè, B., Fusco, R., Cuzzocrea, S., Genazzani, A. A., Riva, B., & Pirali, T. (2020). Store-operated calcium entry as a therapeutic target in acute pancreatitis: Discovery and development of drug-like SOCE inhibitors. Journal of Medicinal Chemistry, 63(23), 14761–14779. https://doi.org/10.1021/acs.jmedchem.0c01305
  • Sharma, A., De Rosa, M., Singla, N., Singh, G., Barnwal, R. P., & Pandey, A. (2021). Tuberculosis: An overview of the immunogenic response, disease progression, and medicinal chemistry efforts in the last decade toward the development of potential drugs for extensively drug-resistant tuberculosis strains. Journal of Medicinal Chemistry, 64(8), 4359–4395. https://doi.org/10.1021/acs.jmedchem.0c01833
  • Sharma, A., Agrahari, A. K., Rajkhowa, S., & Tiwari, V. K. (2022). Emerging impact of triazoles as anti-tubercular agent. European Journal of Medicinal Chemistry, 238, 114454. https://doi.org/10.1016/j.ejmech.2022.114454
  • Sheikh, B. A., Bhat, B. A., Mehraj, U., Mir, W., Hamadani, S., & Mir, M. A. (2021). Development of new therapeutics to meet the current challenge of drug resistant tuberculosis. Current Pharmaceutical Biotechnology, 22(4), 480–500. https://doi.org/10.2174/1389201021666200628021702
  • Sheldon, R., Duff, H., & Koshman, M. L. (1995). Antiarrhythmic activity of quinine in humans. Circulation, 92(10), 2944–2950. https://doi.org/10.1161/01.cir.92.10.2944
  • Stuchinskaya, T., Mitchenall, L. A., Schoeffler, A. J., Corbett, K. D., Berger, J. M., Bates, A. D., & Maxwell, A. (2009). How do type II topoisomerases use ATP hydrolysis to simplify DNA topology beyond equilibrium? Investigating the relaxation reaction of nonsupercoiling type II topoisomerases. Journal of Molecular Biology, 385(5), 1397–1408. https://doi.org/10.1016/j.jmb.2008.11.056
  • Sun, H., Huang, S., Jeyakkumar, P., Cai, G., Fang, B., & Zhou, C. (2022). Natural berberine-derived azolyl ethanols as new structural antibacterial agents against drug-resistant Escherichia coli. Journal of Medicinal Chemistry, 65(1), 436–459. https://doi.org/10.1021/acs.jmedchem.1c01592
  • Temraz, M. G., Elzahhar, P. A., El-Din, A., Bekhit, A., Bekhit, A. A., Labib, H. F., & Belal, A. S. F. (2018). Anti-leishmanial click modifiable thiosemicarbazones: Design, synthesis, biological evaluation and in silico studies. European Journal of Medicinal Chemistry, 151, 585–600. https://doi.org/10.1016/j.ejmech.2018.04.003
  • Thakare, P. P., Walunj, Y., Chavan, A., Bobade, V. D., Sarkar, D., & Mhaske, P. C. (2020). Synthesis and antimycobacterial screening of new 4‐(4‐(1‐benzyl‐1H‐1,2,3‐triazol‐4‐yl)‐1‐phenyl‐1H‐pyrazol‐3‐yl)quinoline derivatives. Journal of Heterocyclic Chemistry, 57(11), 3918–3929. https://doi.org/10.1002/jhet.4101
  • Tiberi, S., Muñoz-Torrico, M., Duarte, R., Dalcolmo, M., D'Ambrosio, L., & Migliori, G.-B. (2018). New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology, 24(2), 86–98. https://doi.org/10.1016/j.rppnen.2017.10.009
  • Tiberi, S., du Plessis, N., Walzl, G., Vjecha, M. J., Rao, M., Ntoumi, F., Mfinanga, S., Kapata, N., Mwaba, P., McHugh, T. D., Ippolito, G., Migliori, G. B., Maeurer, M. J., & Zumla, A. (2018). Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infectious Diseases. 18(7), e183–e198. https://doi.org/10.1016/S1473-3099(18)30110-5
  • Tivari, S. R., Kokate, S. V., Gayke, M. S., Ahmad, I., Patel, H., Kumar, S. G., & Jadeja, Y. S. (2022). A series of dipeptide derivatives containing (S)‐5‐Oxo‐pyrrolidine‐2‐carboxilic acid conjugates: Design, solid‐phase peptide synthesis, in vitro biological evolution, and molecular docking studies. ChemistrySelect, 7(48), e202203462. https://doi.org/10.1002/slct.202203462
  • Travelli, C., Aprile, S., Rahimian, R., Grolla, A. A., Rogati, F., Bertolotti, M., Malagnino, F., di Paola, R., Impellizzeri, D., Fusco, R., Mercalli, V., Massarotti, A., Stortini, G., Terrazzino, S., Grosso, E., Fakhfouri, G., Troiani, M. P., Alisi, M. A., Grosa, G., … Tron, G. C. (2017). Identification of novel triazole-based nicotinamide phosphoribosyltransferase (NAMPT) inhibitors endowed with antiproliferative and antiinflammatory activity. Journal of Medicinal Chemistry, 60(5), 1768–1792. https://doi.org/10.1021/acs.jmedchem.6b01392
  • Walle, T. V., Cools, L., Mangelinckx, S., & D'hooghe, M. (2021). Recent contributions of quinolines to antimalarial and anticancer drug discovery research. European Journal of Medicinal Chemistry, 226, 113865. https://doi.org/10.1016/j.ejmech.2021.113865
  • Wang, W., Wang, W., Yao, G., Ren, Q., Wang, D., Wang, Z., Liu, P., Gao, P., Zhang, Y., Wang, S., & Song, S. (2018). Novel sarsasapogenin-triazolyl hybrids as potential anti-Alzheimer’s agents: Design, synthesis and biological evaluation. European Journal of Medicinal Chemistry, 151, 351–362. https://doi.org/10.1016/j.ejmech.2018.03.082
  • Wang, Z., Hu, J., Yang, X., Feng, X., Li, X., Huang, L., & Chan, A. S. C. (2018). Design, synthesis, and evaluation of orally bioavailable quinoline–indole derivatives as innovative multitarget-directed ligands: Promotion of cell proliferation in the adult murine hippocampus for the treatment of Alzheimer’s disease. Journal of Medicinal Chemistry, 61(5), 1871–1894. https://doi.org/10.1021/acs.jmedchem.7b01417
  • Zajdel, P., Marciniec, K., Maślankiewicz, A., Grychowska, K., Satała, G., Duszyńska, B., Lenda, T., Siwek, A., Nowak, G., Partyka, A., Wróbel, D., Jastrzębska-Więsek, M., Bojarski, A. J., Wesołowska, A., & Pawłowski, M. (2013). Antidepressant and antipsychotic activity of new quinoline- and isoquinoline-sulfonamide analogs of aripiprazole targeting serotonin 5-HT1A/5-HT2A/5-HT7 and dopamine D2/D3 receptors. European Journal of Medicinal Chemistry, 60, 42–50. https://doi.org/10.1016/j.ejmech.2012.11.042

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.