217
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Acalabrutinib as a novel hope for the treatment of breast and lung cancer: an in-silico proof of concept

, , , , , , , , ORCID Icon & show all
Pages 1469-1484 | Received 08 Nov 2022, Accepted 01 Apr 2023, Published online: 05 Jun 2023

References

  • Acalabrutinib Compound Summary. (2022). https://pubchem.ncbi.nlm.nih.gov/compound/Acalabrutinib.
  • Arakal, N. G., Sharma, V., Kumar, A., Kavya, B., Devadath, N. G., Kumar, S. B., Murthy, K. T., & Murahari, M. (2021). Ligand-based design approach of potential Bcl-2 inhibitors for cancer chemotherapy. Computer Methods and Programs in Biomedicine, 209, 106347. https://doi.org/10.1016/j.cmpb.2021.106347
  • Barf, T., Covey, T., Izumi, R., van de Kar, B., Gulrajani, M., van Lith, B., van Hoek, M., de Zwart, E., Mittag, D., Demont, D., Verkaik, S., Krantz, F., Pearson, P. G., Ulrich, R., & Kaptein, A. (2017). Acalabrutinib (ACP-196): A covalent Bruton tyrosine kinase inhibitor with a differentiated selectivity and in vivo potency profile. The Journal of Pharmacology and Experimental Therapeutics, 363(2), 240–252. https://doi.org/10.1124/jpet.117.242909
  • Burger, J. A., Stewart, D. J., Wald, O., & Peled, A. (2011). Potential of CXCR4 antagonists for the treatment of metastatic lung cancer. Expert Review of Anticancer Therapy, 11(4), 621–630. https://doi.org/10.1586/era.11.11
  • CALQUENCE. (2019). https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/210259s006s007lbl.pdf.
  • Ceci, C., Atzori, M. G., Lacal, P. M., & Graziani, G. (2020). Role of VEGFs/VEGFR-1 signaling and its inhibition in modulating tumor invasion: Experimental evidence in different metastatic cancer models. International Journal of Molecular Sciences, 21(4), 1388. https://doi.org/10.3390/ijms21041388
  • Chen, J., Kinoshita, T., Sukbuntherng, J., Chang, B. Y., & Elias, L. (2016). Ibrutinib inhibits ERBB receptor tyrosine kinases and HER2-amplified breast cancer cell growth. Molecular Cancer Therapeutics, 15(12), 2835–2844. https://doi.org/10.1158/1535-7163.MCT-15-0923
  • D'Cruz, O. J., & Uckun, F. M. (2013). Novel Bruton’s tyrosine kinase inhibitors currently in development. OncoTargets and Therapy, 6, 161–176. https://doi.org/10.2147/OTT.S33732
  • Diehl, N., & Schaal, H. (2013). Make yourself at home: Viral hijacking of the PI3K/Akt signaling pathway. Viruses, 5(12), 3192–3212. https://doi.org/10.3390/v5123192
  • Du, X., Shao, Y., Qin, H.-F., Tai, Y.-H., & Gao, H.-J. (2018). ALK‐rearrangement in non‐small‐cell lung cancer (NSCLC). Thoracic Cancer, 9(4), 423–430. https://doi.org/10.1111/1759-7714.12613
  • Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T.-C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes & Diseases, 5(2), 77–106. https://doi.org/10.1016/j.gendis.2018.05.001
  • Fuentes, N., & Silveyra, P. (2019). Estrogen receptor signaling mechanisms. Advances in Protein Chemistry and Structural Biology, 116, 135–170.
  • Giaquinto, A. N., Miller, K. D., Tossas, K. Y., Winn, R. A., Jemal, A., & Siegel, R. L. (2022). Cancer statistics for African American/Black People 2022. CA: A Cancer Journal for Clinicians, 72(3), 202–229. https://doi.org/10.3322/caac.21718
  • Hare, S. H., & Harvey, A. J. (2017). mTOR function and therapeutic targeting in breast cancer. American Journal of Cancer Research, 7(3), 383.
  • Hernandez, J. J., Pryszlak, M., Smith, L., Yanchus, C., Kurji, N., Shahani, V. M., & Molinski, S. V. (2017). Giving drugs a second chance: Overcoming regulatory and financial hurdles in repurposing approved drugs as cancer therapeutics. Frontiers in Oncology, 7, 273. https://doi.org/10.3389/fonc.2017.00273
  • Huang, H. (2018). Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase: A catalytic receptor with many faces. International Journal of Molecular Sciences, 19(11), 3448. https://doi.org/10.3390/ijms19113448
  • Huang, L., Jiang, S., & Shi, Y. (2020). Tyrosine kinase inhibitors for solid tumors in the past 20 years (2001–2020). Journal of Hematology & Oncology, 13(1), 1–23. https://doi.org/10.1186/s13045-020-00977-0
  • Iancu, G., Serban, D., Badiu, C., Tanasescu, C., Tudosie, M., Tudor, C., Costea, D., Zgura, A., Iancu, R., & Vasile, D. (2021). Tyrosine kinase inhibitors in breast cancer. Experimental and Therapeutic Medicine, 23(2), 1–10. https://doi.org/10.3892/etm.2021.11037
  • Isaac, K., & Mato, A. R. (2020). Acalabrutinib and its therapeutic potential in the treatment of chronic lymphocytic leukemia: A short review on emerging data. Cancer Management and Research, 12, 2079–2085. https://doi.org/10.2147/CMAR.S219570
  • James, N., Surana, R., Thigale, I., B. Preethi, P., V. Shanthi, S., & K. Ramanathan, R. (2018). Exploring Novel ALK inhibitors using energy based pharmacophore mapping and high-throughput virtual screening. Indian Journal of Pharmaceutical Education and Research, 52(4), 707–717. https://doi.org/10.5530/ijper.52.4.82
  • Jia, W., Luo, S., Zhao, W., Xu, W., Zhong, Y., & Kong, D. (2022). Discovery of Novel PI3Kδ inhibitors based on the p110δ crystal structure. Molecules, 27(19), 6211. https://doi.org/10.3390/molecules27196211
  • Jiang, W., & Ji, M. (2019). Receptor tyrosine kinases in PI3K signaling: The therapeutic targets in cancer. Seminars in Cancer Biology, 59, 3–22. https://doi.org/10.1016/j.semcancer.2019.03.006
  • Kenda, M., Avsec, D., Zore, T., Kogovšek, E., Pečar Fonović, U., Kos, J., Bozovičar, K., Bratkovič, T., Karas Kuželički, N., Žegura, B., Filipič, M., & Sollner Dolenc, M. (2022). Effects of tyrosine kinase inhibitors on androgen, estrogen α, glucocorticoid and thyroid receptors. Toxicology and Applied Pharmacology, 434, 115818. https://doi.org/10.1016/j.taap.2021.115818
  • Kumar, N., Gahlawat, A., Kumar, R. N., Singh, Y. P., Modi, G., & Garg, P. (2022). Drug repurposing for Alzheimer’s disease: In silico and in vitro investigation of FDA-approved drugs as acetylcholinesterase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(7), 2878–2892. https://doi.org/10.1080/07391102.2020.1844054
  • Laudanski, J., Chyczewski, L., Niklińska, W. E., Kretowska, M., Furman, M., Sawicki, B., & Nikliński, J. (1999). Expression of bcl-2 protein in non-small cell lung cancer: Correlation with clinicopathology and patient survival. Neoplasma, 46(1), 25–30.
  • Leung, T. V., M. E. Hughes, C. G. Cambareri, D. J. Rubin & B. Eaby-Sandy.(2018). Systemic treatments for lung cancer patients receiving hemodialysis. Journal of the Advanced Practitioner in Oncology, 9(6), 614.
  • Li, S. G., & Li, L. (2013). Targeted therapy in HER2‑positive breast cancer. Biomedical Reports, 1(4), 499–505. https://doi.org/10.3892/br.2013.95
  • Lochmann, T. L., Bouck, Y. M., & Faber, A. C. (2018). BCL-2 inhibition is a promising therapeutic strategy for small cell lung cancer. Oncoscience, 5(7–8), 218–219. https://doi.org/10.18632/oncoscience.455
  • Manzo, A., Montanino, A., Carillio, G., Costanzo, R., Sandomenico, C., Normanno, N., Piccirillo, M., Daniele, G., Perrone, F., Rocco, G., & Morabito, A. (2017). Angiogenesis inhibitors in NSCLC. International Journal of Molecular Sciences, 18(10), 2021. https://doi.org/10.3390/ijms18102021
  • Markham, A., & Dhillon, S. (2018). Acalabrutinib: First global approval. Drugs, 78(1), 139–145. https://doi.org/10.1007/s40265-017-0852-8
  • Martorana, F., Motta, G., Pavone, G., Motta, L., Stella, S., Vitale, S. R., Manzella, L., & Vigneri, P. (2021). AKT inhibitors: New weapons in the fight against breast cancer? Frontiers in Pharmacology, 12, 662232. https://doi.org/10.3389/fphar.2021.662232
  • Meng, F. (2013). Molecular dynamics simulation of VEGFR2 with sorafenib and other urea-substituted aryloxy compounds. Journal of Theoretical Chemistry, 2013, 1–7. https://doi.org/10.1155/2013/739574
  • Metibemu, D. S., Akinloye, O. A., Akamo, A. J., Ojo, D. A., Okeowo, O. T., & Omotuyi, I. O. (2019). Exploring receptor tyrosine kinases-inhibitors in Cancer treatments. Egyptian Journal of Medical Human Genetics, 20(1), 35. https://doi.org/10.1186/s43042-019-0035-0
  • Morphy, R. (2010). Selectively nonselective kinase inhibition: Striking the right balance. Journal of Medicinal Chemistry, 53(4), 1413–1437. https://doi.org/10.1021/jm901132v
  • Mottini, C., Napolitano, F., Li, Z., Gao, X., & Cardone, L. (2021). Computer-aided drug repurposing for cancer therapy: Approaches and opportunities to challenge anticancer targets. Seminars in Cancer Biology, 68, 59–74. https://doi.org/10.1016/j.semcancer.2019.09.023
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large‐scale conformational changes with a modified generalized born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Palve, V., Liao, Y., Remsing Rix, L. L., & Rix, U. (2021). Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Seminars in Cancer Biology, 68, 209–229. https://doi.org/10.1016/j.semcancer.2020.02.003
  • Patidar, K., Panwar, U., Vuree, S., Sweta, J., Sandhu, M. K., Nayarisseri, A., & Singh, S. K. (2019). An in silico approach to identify high affinity small molecule targeting m-TOR inhibitors for the clinical treatment of breast cancer. Asian Pacific Journal of Cancer Prevention: APJCP, 20(4), 1229–1241. https://doi.org/10.31557/APJCP.2019.20.4.1229
  • Pottier, C., Fresnais, M., Gilon, M., Jérusalem, G., Longuespée, R., & Sounni, N. E. (2020). Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers, 12(3), 731. https://doi.org/10.3390/cancers12030731
  • Sankhe, R., Rathi, E., Manandhar, S., Kumar, A., Pai, S. R. K., Kini, S. G., & Kishore, A. (2021). Repurposing of existing FDA approved drugs for Neprilysin inhibition: An in-silico study. Journal of Molecular Structure, 1224, 129073. https://doi.org/10.1016/j.molstruc.2020.129073
  • Schrodinger. (XXXX). https://www.schrodinger.com/kb/1027#:∼:text=GlideScore%20is%20an%20empirical%20scoring,known%20to%20influence%20ligand%20binding.
  • Steelman, L. S., Martelli, A. M., Cocco, L., Libra, M., Nicoletti, F., Abrams, S. L., & McCubrey, J. A. (2016). The therapeutic potential of mTOR inhibitors in breast cancer. British Journal of Clinical Pharmacology, 82(5), 1189–1212. https://doi.org/10.1111/bcp.12958
  • Sugappriya, M., Sudarsanam, D., Bhaskaran, R., Joseph, J., & Suresh, A. (2017). Druggability and binding site interaction studies of potential metabolites isolated from marine sponge Aurora globostellata against human epidermal growth factor receptor-2. Bioinformation, 13(8), 261–268. https://doi.org/10.6026/97320630013261
  • Wald, O. (2018). CXCR4 based therapeutics for non-small cell lung cancer (NSCLC). Journal of Clinical Medicine, 7(10), 303. https://doi.org/10.3390/jcm7100303
  • Wu, J., Zhang, M., & Liu, D. (2016). Acalabrutinib (ACP-196): A selective second-generation BTK inhibitor. Journal of Hematology & Oncology, 9(1), 1–4. https://doi.org/10.1186/s13045-016-0250-9
  • Wu, J., Zhang, M., & Liu, D. (2016). Acalabrutinib (ACP-196): a selective second-generation BTK inhibitor. Journal of hematology & oncology, 9(1), 1–4.
  • Zhang, Z., Zhou, L., Xie, N., Nice, E. C., Zhang, T., Cui, Y., & Huang, C. (2020). Overcoming cancer therapeutic bottleneck by drug repurposing. Signal Transduction and Targeted Therapy, 5(1), 1–25. https://doi.org/10.1038/s41392-020-00213-8
  • Zhong, L., Li, Y., Xiong, L., Wang, W., Wu, M., Yuan, T., Yang, W., Tian, C., Miao, Z., Wang, T., & Yang, S. (2021). Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduction and Targeted Therapy, 6(1), 1–48. https://doi.org/10.1038/s41392-021-00572-w
  • Zhu, Q., Luo, R., Gu, J., Hou, Y., Chen, Z., Xu, F., Wang, L., Mao, W., Lu, C., & Ge, D. (2020). High CXCR4 expression predicts a poor prognosis in resected lung Adenosquamous carcinoma. Journal of Cancer, 11(4), 810–818. https://doi.org/10.7150/jca.36498
  • Zhu, S., Jung, J., Victor, E., Arceo, J., Gokhale, S., & Xie, P. (2021). Clinical trials of the BTK inhibitors ibrutinib and acalabrutinib in human diseases beyond B cell malignancies. Frontiers in Oncology, 11, 737943. https://doi.org/10.3389/fonc.2021.737943

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.