217
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Constituents of Stachys plants as potential dual inhibitors of AChE and NMDAR for the treatment of Alzheimer’s disease: a molecular docking and dynamic simulation study

, , , , , & ORCID Icon show all
Pages 2586-2602 | Received 04 Jan 2023, Accepted 17 Apr 2023, Published online: 16 Jun 2023

References

  • Asnaashari, S., Delazar, A., Alipour, S., Nahar, L., Williams, A., Pasdaran, A., Mojarab, M., Azad, F., & Sarker, S. D. (2010). Chemical composition, free-radical-scavenging and insecticidal activities of the aerial parts of Stachys byzantina. Archives of Biological Sciences, 62(3), 653–662. https://doi.org/10.2298/ABS1003653A
  • Bahadori, M. B., Kirkan, B., & Sarikurkcu, C. (2019). Phenolic ingredients and therapeutic potential of Stachys cretica subsp. smyrnaea for the management of oxidative stress, Alzheimer’s disease, hyperglycemia, and melasma. Industrial Crops and Products, 127, 82–87. https://doi.org/10.1016/j.indcrop.2018.10.066
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Bartus, R. T., Dean, R. L., III, Beer, B., & Lippa, A. S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science (New York, N.Y.), 217(4558), 408–414. https://doi.org/10.1126/science.7046051
  • Bekris, L. M., Yu, C. E., Bird, T. D., & Tsuang, D. (2011). The genetics of Alzheimer’s disease and Parkinson’s disease. Neurochemical Mechanisms in Disease, 23(4), 213-27. https://doi.org/10.1177/0891988710383571.
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, November (p. 84-es). https://doi.org/10.1145/1188455.1188544
  • Braidy, N., Poljak, A., Jayasena, T., & Sachdev, P. (2017). Natural plant‐derived acetylcholinesterase inhibitors: Relevance for Alzheimer’s disease. Natural Products Targeting Clinically Relevant Enzymes, 297–318. https://doi.org/10.1002/9783527805921.ch12
  • Chiavaroli, A., Di Simone, S. C., Sinan, K. I., Ciferri, M. C., Angeles Flores, G., Zengin, G., Etienne, O. K., Ak, G., Fawzi Mahomoodally, M., Jugreet, S., Cziáky, Z., Jekő, J., Recinella, L., Brunetti, L., Leone, S., Angelini, P., Venanzoni, R., Menghini, L., Ferrante, C., & Orlando, G. (2020). Pharmacological properties and chemical profiles of Passiflora foetida L. extracts: Novel insights for pharmaceuticals and nutraceuticals. Processes, 8(9), 1034. https://doi.org/10.3390/pr8091034
  • Conforti, F., Menichini, F., Formisano, C., Rigano, D., Senatore, F., Arnold, N. A., & Piozzi, F. (2009). Comparative chemical composition, free radical-scavenging and cytotoxic properties of essential oils of six Stachys species from different regions of the Mediterranean Area. Food Chemistry, 116(4), 898–905. https://doi.org/10.1016/j.foodchem.2009.03.044
  • Craig, L. A., Hong, N. S., & McDonald, R. J. (2011). Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 35(6), 1397–1409. https://doi.org/10.1016/j.neubiorev.2011.03.001
  • Elfalleh, W., Kirkan, B., & Sarikurkcu, C. (2019). Antioxidant potential and phenolic composition of extracts from Stachys tmolea: An endemic plant from Turkey. Industrial Crops and Products, 127, 212–216. https://doi.org/10.1016/j.indcrop.2018.10.078
  • Francis, P. T. (2005). The interplay of neurotransmitters in Alzheimer’s disease. CNS Spectrums, 10(11 Suppl 18), 6–9. https://doi.org/10.1017/s1092852900014164
  • Francis, P. T., Parsons, C. G., & Jones, R. W. (2012). Rationale for combining glutamatergic and cholinergic approaches in the symptomatic treatment of Alzheimer’s disease. Expert Review of Neurotherapeutics, 12(11), 1351–1365. https://doi.org/10.1586/ern.12.124
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C., & Mainz, D. T. (2006). Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. Journal of Medicinal Chemistry, 49(21), 6177–6196. https://doi.org/10.1021/jm051256o
  • Graça, V. C., Calhelha, R. C., Nunes, F. M., Berthet, J., Ferreira, I. C., & Santos, P. F. (2019). Isolation of secondary metabolites from Geranium molle L. with anticancer potential. Industrial Crops and Products, 142, 111859. https://doi.org/10.1016/j.indcrop.2019.111859
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6–7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harada, S., Tsujita, T., Ono, A., Miyagi, K., Mori, T., & Tokuyama, S. (2015). Stachys sieboldii (Labiatae, Chorogi) protects against learning and memory dysfunction associated with ischemic brain injury. Journal of Nutritional Science and Vitaminology, 61(2), 167–174. https://doi.org/10.3177/jnsv.61.167
  • Háznagy-Radnai, E., Réthy, B., Czigle, S., Zupkó, I., Wéber, E., Martinek, T., Falkay, G., & Máthé, I. (2008). Cytotoxic activities of Stachys species. Fitoterapia, 79(7–8), 595–597. https://doi.org/10.1016/j.fitote.2008.06.009
  • Huang, D., Jin, L., Li, Z., Wu, J., Zhang, N., Zhou, D., Ni, X., & Hou, T. (2018). Isoorientin triggers apoptosis of hepatoblastoma by inducing DNA double-strand breaks and suppressing homologous recombination repair. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 101, 719–728. https://doi.org/10.1016/j.biopha.2018.02.142
  • Iqbal, D., Khan, M. S., Waiz, M., Rehman, M. T., Alaidarous, M., Jamal, A., Alothaim, A. S., AlAjmi, M. F., Alshehri, B. M., Banawas, S., Alsaweed, M., Madkhali, Y., Algarni, A., Alsagaby, S. A., & Alturaiki, W. (2021). Exploring the binding pattern of geraniol with acetylcholinesterase through in silico docking, molecular dynamics simulation, and in vitro enzyme inhibition kinetics studies. Cells, 10(12), 3533. https://doi.org/10.3390/cells10123533
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/s0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all‐atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jassbi, A. R., Miri, R., Asadollahi, M., Javanmardi, N., & Firuzi, O. (2014). Cytotoxic, antioxidant and antimicrobial effects of nine species of woundwort (Stachys) plants. Pharmaceutical Biology, 52(1), 62–67. https://doi.org/10.3109/13880209.2013.810650
  • Ji, S., Li, S., Zhao, X., Kang, N., Cao, K., Zhu, Y., Peng, P., Fan, J., Xu, Q., Yang, S., & Liu, Y. (2019). Protective role of phenylethanoid glycosides, Torenoside B and Savatiside A, in Alzheimer’s disease. Experimental and Therapeutic Medicine, 17(5), 3755–3767. https://doi.org/10.3892/etm.2019.7355
  • Karakas, E., Simorowski, N., & Furukawa, H. (2009). Structure of the zinc‐bound amino‐terminal domain of the NMDA receptor NR2B subunit. The EMBO Journal, 28(24), 3910–3920. https://doi.org/10.1038/emboj.2009.338
  • Khanavi, M., Sharifzadeh, M., Hadjiakhoondi, A., & Shafiee, A. (2005). Phytochemical investigation and anti-inflammatory activity of aerial parts of Stachys byzanthina C. Koch. Journal of Ethnopharmacology, 97(3), 463–468. https://doi.org/10.1016/j.jep.2004.11.037
  • Liang, Z., Currais, A., Soriano-Castell, D., Schubert, D., & Maher, P. (2021). Natural products targeting mitochondria: Emerging therapeutics for age-associated neurological disorders. Pharmacology & Therapeutics, 221, 107749. https://doi.org/10.1016/j.pharmthera.2020.107749
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Lipton, S. A. (2006). Paradigm shift in neuroprotection by NMDA receptor blockade: Memantine and beyond. Nature Reviews. Drug Discovery, 5(2), 160–170. https://doi.org/10.1038/nrd1958
  • Liu, H., Wang, L., Lv, M., Pei, R., Li, P., Pei, Z., Wang, Y., Su, W., & Xie, X.-Q. (2014). AlzPlatform: An Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. Journal of Chemical Information and Modeling, 54(4), 1050–1060. https://doi.org/10.1021/ci500004h
  • Luo, W., Chen, Y., Wang, T., Hong, C., Chang, L.-P., Chang, C.-C., Yang, Y.-C., Xie, S.-Q., & Wang, C.-J. (2016). Design, synthesis and evaluation of novel 7-aminoalkyl-substituted flavonoid derivatives with improved cholinesterase inhibitory activities. Bioorganic & Medicinal Chemistry, 24(4), 672–680. https://doi.org/10.1016/j.bmc.2015.12.031
  • Marotta, G., Basagni, F., Rosini, M., & Minarini, A. (2020). Memantine derivatives as multitarget agents in Alzheimer’s disease. Molecules, 25(17), 4005. https://doi.org/10.3390/molecules25174005
  • Mohapel, P., Leanza, G., Kokaia, M., & Lindvall, O. (2005). Forebrain acetylcholine regulates adult hippocampal neurogenesis and learning. Neurobiology of Aging, 26(6), 939–946. https://doi.org/10.1016/j.neurobiolaging.2004.07.015
  • Molinspiration Cheminformatics. 1986. Bratislava, Slovak Republic. http://www.molinspiration.com/services/properties.html
  • Nabavizadeh, F., Alizadeh, A. M., Adeli, S., Golestan, M., Moloudian, H., & Kamalinejad, M. (2011). Gastroprotective effects of Stachys Lavandulifolia extract on experimental gastric ulcer. African Journal of Pharmacy and Pharmacology, 5(2), 155–159. https://doi.org/10.5897/AJPP10.296
  • Nishimura, H., Sasaki, H., Inagaki, N., Masao, C., Chen, Z., & Mitsuhashi, H. (1991). Nine phenethyl alcohol glycosides from Stachys sieboldii. Phytochemistry, 30(3), 965–969. https://doi.org/10.1016/0031-9422(91)85288-b
  • Nyakas, C., Granic, I., Halmy, L. G., Banerjee, P., & Luiten, P. G. (2011). The basal forebrain cholinergic system in aging and dementia. Rescuing cholinergic neurons from neurotoxic amyloid-β42 with memantine. Behavioural Brain Research, 221(2), 594–603. https://doi.org/10.1016/j.bbr.2010.05.033
  • Oh, D.-R., Kim, Y., Im, S., Oh, K.-N., Shin, J., Jeong, C., Kim, Y., Choi, E. J., & Choi, C. (2021). Vaccinium bracteatum improves spatial learning and memory by regulating N-methyl-D-aspartate receptors and Tau phosphorylation in chronic restraint stress-induced memory impaired mice. The American Journal of Chinese Medicine, 49(1), 69–94. https://doi.org/10.1142/S0192415X2150004X
  • Parsons, C. G., Danysz, W., Dekundy, A., & Pulte, I. (2013). Memantine and cholinesterase inhibitors: Complementary mechanisms in the treatment of Alzheimer’s disease. Neurotoxicity Research, 24(3), 358–369. https://doi.org/10.1007/s12640-013-9398-z
  • Patel, L., & Grossberg, G. T. (2011). Combination therapy for Alzheimer’s disease. Drugs & Aging, 28(7), 539–546. https://doi.org/10.2165/11591860-000000000-00000
  • Rasool, M., Malik, A., Waquar, S., Tul-Ain, Q., Jafar, T. H., Rasool, R., Kalsoom, A., Ghafoor, M. A., Sehgal, S. A., Gauthaman, K., Naseer, M. I., Al-Qahtani, M. H., & Pushparaj, P. N. (2018). In-silico characterization and in-vivo validation of Albiziasaponin-A, Iso-Orientin, and Salvadorin using a rat model of Alzheimer’s disease. Frontiers in Pharmacology, 9, 730. https://doi.org/10.3389/fphar.2018.00730
  • Regulation of the NMDA. 2007. receptor-mediated synaptic response by acetylcholinesterase inhibitors and its impairment in an animal model of Alzheimer’s disease.
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Rosini, M., Simoni, E., Minarini, A., & Melchiorre, C. (2014). Multi-target design strategies in the context of Alzheimer’s disease: Acetylcholinesterase inhibition and NMDA receptor antagonism as the driving forces. Neurochemical Research, 39(10), 1914–1923. https://doi.org/10.1007/s11064-014-1250-1
  • Schrödinger, LLC. (2021). Schrödinger Release: Maestro. Schrödinger, LLC.
  • Silman, I., & Sussman, J. L. (2008). Acetylcholinesterase: How is structure related to function? Chemico-Biological Interactions, 175(1–3), 3–10. https://doi.org/10.1016/j.cbi.2008.05.035
  • Sun, Y., Chen, Z., Yang, J., Mutanda, I., Li, S., Zhang, Q., Zhang, Y., Zhang, Y., & Wang, Y. (2020). Pathway-specific enzymes from bamboo and crop leaves biosynthesize anti-nociceptive C-glycosylated flavones. Communications Biology, 3(1), 110. https://doi.org/10.1038/s42003-020-0834-3
  • Tan, X., Liang, Z., Li, Y., Zhi, Y., Yi, L., Bai, S., Forest, K. H., Nichols, R. A., Dong, Y., & Li, Q. X. (2021). Isoorientin, a GSK-3β inhibitor, rescues synaptic dysfunction, spatial memory deficits and attenuates pathological progression in APP/PS1 model mice. Behavioural Brain Research, 398, 112968. https://doi.org/10.1016/j.bbr.2020.112968
  • Tomou, E. M., Barda, C., & Skaltsa, H. (2020). Genus Stachys: A review of traditional uses, phytochemistry and bioactivity. Medicines, 7(10), 63. https://doi.org/10.3390/medicines7100063
  • Tundis, R., Peruzzi, L., & Menichini, F. (2014). Phytochemical and biological studies of Stachys species in relation to chemotaxonomy: A review. Phytochemistry, 102, 7–39. https://doi.org/10.1016/j.phytochem.2014.01.023
  • Uba, A. I., Chea, J., Hoag, H., Hryb, M., Bui-Linh, C., & Wu, C. (2022). Binding of a positive allosteric modulator CDPPB to metabotropic glutamate receptor type 5 (mGluR5) probed by all-atom molecular dynamics simulations. Life Sciences, 309, 121014. https://doi.org/10.1016/j.lfs.2022.121014
  • Ulubelen, A., Topcu, G., & Kolak, U. (2005). Labiatae flavonoids and their bioactivity. In Studies in natural products chemistry (Vol. 30, pp. 233–302). Elsevier.
  • Villmann, C., & Becker, C. M. (2007). On the hypes and falls in neuroprotection: Targeting the NMDA receptor. The Neuroscientist, 13(6), 594–615. https://doi.org/10.1177/1073858406296259
  • Wang, F., Li, C., Liu, W., & Jin, Y. (2014). Potential mechanisms of neurobehavioral disturbances in mice caused by sub-chronic exposure to low-dose VOCs. Inhalation Toxicology, 26(4), 250–258. https://doi.org/10.3109/08958378.2014.882447
  • Wenk, G. L. (2006). Neuropathologic changes in Alzheimer’s disease: Potential targets for treatment. Journal of Clinical Psychiatry, 67, 3.
  • Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., & Delon, M. R. (1982). Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain. Science (New York, N.Y.), 215(4537), 1237–1239. https://doi.org/10.1126/science.7058341
  • Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  • Yuan, L., Li, X., He, S., Gao, C., Wang, C., & Shao, Y. (2018). Effects of natural flavonoid isoorientin on growth performance and gut microbiota of mice. Journal of Agricultural and Food Chemistry, 66(37), 9777–9784. https://doi.org/10.1021/acs.jafc.8b03568
  • Zhang, Y., Yu, W., Zhang, L., Wang, M., & Chang, W. (2022). The interaction of polyphenols and the gut microbiota in neurodegenerative diseases. Nutrients, 14(24), 5373. https://doi.org/10.3390/nu14245373
  • Zhang, Z., Tan, X., Sun, X., Wei, J., Li, Q. X., & Wu, Z. (2022). Isoorientin affects markers of Alzheimer’s disease via effects on the oral and gut microbiota in APP/PS1 mice. The Journal of Nutrition, 152(1), 140–152. https://doi.org/10.1093/jn/nxab328

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.