243
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, antitubercular profile and molecular docking studies of quinazolinone-based pyridine derivatives against drug-resistant tuberculosis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 3307-3317 | Received 04 Jan 2023, Accepted 03 May 2023, Published online: 01 Jun 2023

References

  • Bolla, J. R. (2020). Targeting MmpL3 for anti-tuberculosis drug development. Biochemical Society Transactions, 48(4), 1463–1472. https://doi.org/10.1042/BST20190950
  • Cinu, T. A., Sidhartha, S. K., Indira, B., Varadaraj, B. G., Vishnu, P. S., & Shenoy, G. G. (2019). Design, synthesis and evaluation of antitubercular activity of Triclosan analogues. Arabian Journal of Chemistry, 12(8), 3316–3323. https://doi.org/10.1016/j.arabjc.2015.09.003
  • Deepakumari, H. N., Jayanna, B. K., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2016). Synthesis and Anticonvulsant Activity of N‐(Substituted)‐1‐methyl‐2,4‐dioxo‐1,2‐dihydroquinazoline‐3(4H)‐carboxamides. Archiv der Pharmazie, 349(7), 566–571. https://doi.org/10.1002/ardp.201600024
  • Dutta, A., & Sarma, D. (2020). Recent advances in the synthesis of Quinazoline analogues as Anti-TB agents. Tuberculosis (Edinburgh, Scotland), 124, 101986. https://doi.org/10.1016/j.tube.2020.101986
  • Geetha, V. R. (2014). MmpL3 a potential new target for development of novel anti-tuberculosis drugs. Expert Opinion in Therapeutic Targets, 18, 247–256.
  • Grzegorzewicz, A. E., Pham, H., Gundi, V. A., Scherman, M. S., North, E. J., Hess, T., Jones, V., Gruppo, V., Born, S. E., Kordulakova, J., Chavadi, S. S., Morisseau, C., Lenaerts, A. J., Lee, R. E., McNeil, M. R., & Jackson, M. (2012). Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nature Chemical Biology, 8(4), 334–341. https://doi.org/10.1038/nchembio.794
  • Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K., & Jonnalagadda, S. B. (2020). A Review on recent advances in nitrogen-containing molecules and their biological applications. Molecules, 25(8), 1909. https://doi.org/10.3390/molecules25081909
  • Khan, E. (2021). Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect, 6(13), 3041–3064. https://doi.org/10.1002/slct.202100332
  • Kumar, C. B. P., Raghu, M. S., Prathibha, B. S., Prashanth, M. K., Kanthimathi, G., Kumar, K. Y., Parashuram, L., & Alharthi, F. A. (2021). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorganic & Medicinal Chemistry Letters, 44, 128118. https://doi.org/10.1016/j.bmcl.2021.128118
  • Leeson, P. D., Bento, A. P., Gaulton, A., Hersey, A., Manners, E. J., Radoux, C. J., & Leach, A. R. (2021). Target-based evaluation of "Drug-Like" properties and ligand efficiencies. Journal of Medicinal Chemistry, 64(11), 7210–7230. https://doi.org/10.1021/acs.jmedchem.1c00416
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Madaiah, M., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2016). Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New Journal of Chemistry, 40(11), 9194–9204. https://doi.org/10.1039/C6NJ02069K
  • Madaiah, M., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2014). Synthesis and pharmacological evaluation of novel 1′‐[2‐(Difluoromethoxy) benzyl]‐2′ H, 5′ H‐spiro [8‐azabicyclo [3.2. 1] octane‐3, 4′‐imidazolidine]‐2′, 5′‐diones and Their Derivatives. Archiv der Pharmazie, 347(5), 370–380. https://doi.org/10.1002/ardp.201300289
  • Malik, A. A., Sheikh, J. A., Ehtesham, N. Z., Hira, S., & Hasnain, S. E. (2022). Can Mycobacterium tuberculosis infection lead to cancer? Call for a paradigm shift in understanding TB and cancer. International Journal of Medical Microbiology : IJMM, 312(5), 151558. https://doi.org/10.1016/j.ijmm.2022.151558
  • Meena, C. L., Singh, P., Shaliwal, R. P., Varun, K., Arun, K., Tiwari, A. K., Asthana, S., Singh, R., & Mahajan, D. (2020). Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. European Journal of Medicinal Chemistry, 208, 112772. https://doi.org/10.1016/j.ejmech.2020.112772
  • Melly, G., & Purdy, G. E. (2019). MmpL proteins in physiology and pathogenesis of M. tuberculosis. Microorganisms, 7(3), 70. https://doi.org/10.3390/microorganisms7030070
  • Navarrete, V. G., Mari, G., Duarte-Fajardo, Z. V., Vargas-Villarreal, J., Estrada-Soto, S., Gonzalez-Salazar, F., Hernández-Nunez, E., & Said-Fernandez, S. (2007). Synthesis and antimycobacterial activity of 4-(5-substituted-1, 3, 4-oxadiazol-2-yl) pyridines. Bioorganic & Medicinal Chemistry, 15(16), 5502–5508. https://doi.org/10.1016/j.bmc.2007.05.053
  • Pai, M., Behr, M. A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C. C., Ginsberg, A., Swaminathan, S., Spigelman, M., Getahun, H., Menzies, D., & Raviglione, M. (2016). Tuberculosis. Nature Review Disease Primers, 2, 16076.
  • Patel, H., Chaudhari, K., Jain, P., & Surana, S. (2020). Synthesis and in vitro antitubercular activity of pyridine analouges against the resistant Mycobacterium tuberculosis. Bioorganic Chemistry, 102, 104099. https://doi.org/10.1016/j.bioorg.2020.104099
  • Pradeep Kumar, C. B., Raghu, M. S., Prasad, K. N. N., Chandrasekhar, S., Jayanna, B. K., Alharthi, F. A., Prashanth, M. K., & Yogesh Kumar, K. (2021). Investigation of biological activity of 2,3-disubstituted quinazolin-4(1H)-ones against Mycobacterium tuberculosis and DNA via docking, spectroscopy and DFT studies. New Journal of Chemistry, 45(1), 403–414. https://doi.org/10.1039/D0NJ03800H
  • Raghu, M. S., Pradeep Kumar, C. B., Prasad, K. N. N., Prashanth, M. K., Y., Kumar, K., Chandrasekhar, S., & Veeresh, B. (2020). MoS2-Calix[4]arene catalyzed synthesis and molecular docking study of 2,4,5-trisubstituted imidazoles as potent inhibitors of Mycobacterium tuberculosis. ACS Combinatorial Science, 22(10), 509–518. https://doi.org/10.1021/acscombsci.0c00038
  • Raghu, M. S., Pradeep Kumar, C. B., Prashanth, M. K., Yogesh Kumar, K., Prathibha, B. S., Kanthimathi, G., Alissa, S. A., Alghulikah, H. A., & Osman, S. M. (2021). Novel 1,3,5-triazine-based pyrazole derivatives as potential antitumor agents and EFGR kinase inhibitors: Synthesis, cytotoxicity, DNA binding, molecular docking and DFT studies. New Journal of Chemistry, 45(31), 13909–13924. https://doi.org/10.1039/D1NJ02419A
  • Raghu, M. S., Pradeep Kumar, C. B., Yogesh Kumar, K., Prashanth, M. K., Alshahrani, M. Y., Ahmad, I., & Jain, R. (2022). Design, synthesis and molecular docking studies of imidazole and benzimidazole linked ethionamide derivatives as inhibitors of InhA and antituberculosis agents. Bioorganic & Medicinal Chemistry Letters, 60, 128604. https://doi.org/10.1016/j.bmcl.2022.128604
  • Raghu, M. S., Yogesh Kumar, K., Veena, K., Pradeep Kumar, C. B., Almalki, A. S., Mani, G., Alasmary, F. A., & Prashanth, M. K. (2022). Synthesis, characterization, antimicrobial and interaction studies of pteridines with human serum albumin: A combined multi-spectroscopic and computational study. Journal of Molecular Structure, 1250, 131857. https://doi.org/10.1016/j.molstruc.2021.131857
  • Raveesha, R., Yogesh Kumar, K., Raghu, M. S., Benaka Prasad, S. B., Alsalme, A., Krishnaiah, P., & Prashanth, M. K. (2022a). Synthesis, in silico ADME, toxicity prediction and molecular docking studies of N-substituted [1,2,4] triazolo [4,3-a] pyrazine derivatives as potential anticonvulsant agents. Journal of Molecular Structure, 1255, 132407. https://doi.org/10.1016/j.molstruc.2022.132407
  • Raveesha, R., Yogesh Kumar, K., Raghu, M. S., Benaka Prasad, S. B., Alsalme, A., Krishnaiah, P., & Prashanth, M. K. (2022b). Synthesis, molecular docking, antimicrobial, antioxidant and anticonvulsant assessment of novel S and C-linker thiazole derivatives. Chemical Physics Letters, 791, 139408. https://doi.org/10.1016/j.cplett.2022.139408
  • Srivastava, S., & Sujiti, S. (2015). Biological activity of Quinazoline: A review. International Journal of Pharmaceutical Science & Research, 6, 1206–1213.
  • Taylor, A. P., Robinson, R. P., Fobian, Y. M., Blakemore, D. C., Jones, L. H., & Fadeyi, O. (2016). Modern advances in heterocyclic chemistry in drug discovery. Organic & Biomolecular Chemistry, 14(28), 6611–6637. https://doi.org/10.1039/c6ob00936k
  • Umare, M. D., Khedekar, P. B., & Rupesh, V. C. (2021). Mycobacterial membrane protein large 3 (MmpL3) inhibitors: A promising approach to combat tuberculosis. ChemMedChem, 16(20), 3136–3148. https://doi.org/10.1002/cmdc.202100359
  • Veena, K., Raghu, M. S., Yogesh Kumar, K., Pradeep Kumar, C. B., Alharti, F. A., Prashanth, M. K., & Jeon, B. H. (2022). Design and synthesis of novel benzimidazole linked thiazole derivatives as promising inhibitors of drug-resistant tuberculosis. Journal of Molecular Structure, 1269, 133822. https://doi.org/10.1016/j.molstruc.2022.133822
  • Verma, S. K., Verma, R., Verma, S., Vaishnav, Y., Tiwari, S. P., & Rakesh, K. P. (2021). Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. European Journal of Medicinal Chemistry, 209, 112886. https://doi.org/10.1016/j.ejmech.2020.112886
  • WHO. (2021). Global Tuberculosis Report.
  • Ying, X., Zhang, W., Rui-Jun, Q., & Tang, J. (2022). Risk factors for multidrug-resistant tuberculosis: A worldwide systematic review and meta-analysis. PLoS One, 17(6), e0270003. https://doi.org/10.1371/journal.pone.0270003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.