160
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Characterization of host receptor interaction with envelop protein of Kyasanur forest disease virus and predicting suitable epitopes for vaccine candidate

, , &
Pages 4110-4120 | Received 13 Feb 2023, Accepted 22 May 2023, Published online: 05 Jun 2023

References

  • Acland, A., Agarwala, R., Barrett, T., Beck, J., Benson, D. A., Bollin, C., Bolton, E., Bryant, S. H., Canese, K., Church, D. M., Clark, K., DiCuccio, M., Dondoshansky, I., Federhen, S., Feolo, M., Geer, L. Y., Gorelenkov, V., Hoeppner, M., Johnson, M., … Zbicz, K. (2013). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 41(D1), 8–20. https://doi.org/10.1093/nar/gks1189
  • Anderson, R. J., Weng, Z., Campbell, R. K., & Jiang, X. (2005). Main-chain conformational tendencies of amino acids. Proteins: Structure, Function, and Bioinformatics, 60(4), 679–689. https://doi.org/10.1002/prot.20530
  • Barrows, N. J., Campos, R. K., Liao, K. C., Prasanth, K. R., Soto-Acosta, R., Yeh, S. C., Schott-Lerner, G., Pompon, J., Sessions, O. M., Bradrick, S. S., & Garcia-Blanco, M. A. (2018). Biochemistry and molecular biology of flaviviruses. Chemical Reviews, 118(8), 4448–4482. https://doi.org/10.1021/acs.chemrev.7b00719
  • Bienert, S., Waterhouse, A., De Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Research, 45(D1), D313–D319. https://doi.org/10.1093/nar/gkw1132
  • Bressanelli, S., Stiasny, K., Allison, S. L., Stura, E. A., Duquerroy, S., Lescar, J., Heinz, F. X., & Rey, F. A. (2004). Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. The EMBO Journal, 23(4), 728–738. https://doi.org/10.1038/sj.emboj.7600064
  • Chen, S. T., Liu, R. S., Wu, M. F., Lin, Y. L., Chen, S. Y., Tan, D. T. W., Chou, T. Y., Tsai, I. S., Li, L., & Hsieh, S. L. (2012). CLEC5A regulates Japanese encephalitis virus-induced neuroinflammation and lethality. PLoS Pathogens, 8(4), e1002655. https://doi.org/10.1371/journal.ppat.1002655
  • Chin, J. F. L., Chu, J. J. H., & Ng, M. L. (2007). The envelope glycoprotein domain III of dengue virus serotypes 1 and 2 inhibit virus entry. Microbes and Infection, 9(1), 1–6. https://doi.org/10.1016/j.micinf.2006.09.009
  • Chu, J. J. H., & Ng, M. L. (2004). Interaction of West Nile virus with αvβ3 integrin mediates virus entry into cells. The Journal of Biological Chemistry, 279(52), 54533–54541. https://doi.org/10.1074/jbc.M410208200
  • Davis, C. W., Mattei, L. M., Nguyen, H. Y., Ansarah-Sobrinho, C., Doms, R. W., & Pierson, T. C. (2006). The location of asparagine-linked glycans on west nile virions controls their interactions with CD209 (dendritic cell-specific ICAM-3 grabbing nonintegrin). The Journal of Biological Chemistry, 281(48), 37183–37194. https://doi.org/10.1074/jbc.M605429200
  • Dejnirattisai, W., Webb, A. I., Chan, V., Jumnainsong, A., Davidson, A., Mongkolsapaya, J., & Screaton, G. (2011). Lectin switching during dengue virus infection. The Journal of Infectious Diseases, 203(12), 1775–1783. https://doi.org/10.1093/infdis/jir173
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dodd, K. A., Bird, B. H., Khristova, M. L., Albariño, C. G., Carroll, S. A., Comer, J. A., Erickson, B. R., Rollin, P. E., & Nichol, S. T. (2011). Ancient ancestry of KFDV and AHFV revealed by complete genome analyses of viruses isolated from ticks and Mammalian hosts. PLoS Neglected Tropical Diseases, 5(10), e1352. https://doi.org/10.1371/journal.pntd.0001352
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 7. https://doi.org/10.1186/1471-2105-8-4
  • Fahimi, H., Allahyari, H., Hassan, Z. M., & Sadeghizadeh, M. (2014). Dengue virus type-3 envelope protein domain iii; expression and immunogenicity. Iranian Journal of Basic Medical Sciences, 17(11), 836–843.
  • Guirakhoo, F., Hunt, A. R., Lewis, J. G., Roehrig, J. T. (1993). Selection and partial characterization of dengue 2 virus mutants that induce fusion at elevated pH. Virology, 194(1), 219–23. https://doi.org/10.1006/viro.1993.1252
  • Heinz, F. X., & Allison, S. L. (2003). Flavivirus structure and membrane fusion. Advances in Virus Research, 59, 63–97. https://doi.org/10.1016/S0065-3527(03)59003-0
  • Holbrook, M. R. (2012). Kyasanur forest disease michael. NIH Public Access, 96(3), 353–362. https://doi.org/10.1016/j.antiviral.2012.10.005.Kyasanur
  • Hollingsworth, S. A., & Karplus, P. A. (2010). A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomolecular Concepts, 1(3-4), 271–283. https://doi.org/10.1515/bmc.2010.022
  • Johnson, A. J., Guirakhoo, F., & Roehrig, J. T. (1994). The envelope glycoproteins of dengue 1 and dengue 2 viruses grown in mosquito cells differ in their utilization of potential glycosylation sites. In Virology, 203 (2), 241–249. (https://doi.org/10.1006/viro.1994.1481
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Pavri, K. (1989). Clinical, clinicopathologic, and hematologic features of Kyasanur forest disease. Clinical Infectious Diseases, 11(Supplement_4), S854–S859. https://doi.org/10.1093/clinids/11.Supplement_4.S854
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Larsen, J. E. P., Lund, O., & Nielsen, M. (2006). Improved method for predicting linear B-cell epitopes. Immunome Research, 2(1), 2. https://doi.org/10.1186/1745-7580-2-2
  • Larsen, M. V., Lundegaard, C., Lamberth, K., Buus, S., Lund, O., & Nielsen, M. (2007). Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics, 8, 424. https://doi.org/10.1186/1471-2105-8-424
  • Laureti, M., Narayanan, D., Rodriguez-Andres, J., Fazakerley, J. K., & Kedzierski, L. (2018). Flavivirus receptors: Diversity, identity, and cell entry. Frontiers in Immunology, 9(September), 2180. https://doi.org/10.3389/fimmu.2018.02180
  • Lee, E., Weir, R. C., & Dalgarno, L. (1997). Changes in the dengue virus major envelope protein on passaging and their localization on the three-dimensional structure of the protein. Virology, 232(2), 281–290. https://doi.org/10.1006/viro.1997.8570
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pK a values. Proteins, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • Luca, V. C., AbiMansour, J., Nelson, C. A., & Fremont, D. H. (2012). Crystal structure of the japanese encephalitis virus envelope protein. Journal of Virology, 86(4), 2337–2346. https://doi.org/10.1128/jvi.06072-11
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mehla, R., Kumar, S. R. P., Yadav, P., Barde, P. V., Yergolkar, P. N., Erickson, B. R., Carroll, S. A., Mishra, A. C., Nichol, S. T., & Mourya, D. T. (2009). Recent ancestry of Kyasanur Forest disease virus. Emerging Infectious Diseases, 15(9), 1431–1437. https://doi.org/10.3201/eid1509.080759
  • Mei, X., Li, X., Zhao, C., Liu, A., Ding, Y., Shen, C., & Li, J. (2022). The use of molecular dynamics simulation method to quantitatively evaluate the affinity between HBV antigen T cell epitope peptides and HLA-A molecules. International Journal of Molecular Sciences, 23(9), 4629. https://doi.org/10.3390/ijms23094629
  • Miller, J. L., de Wet, B. J. M., Martinez-Pomares, L., Radcliffe, C. M., Dwek, R. A., Rudd, P. M., & Gordon, S. (2008). The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathogens, 4(2), e17. https://doi.org/10.1371/journal.ppat.0040017
  • Mishra, N. K., Singla, D., Agarwal, S., & Raghava, G. P. S. (2014). ToxiPred: A server for prediction of aqueous toxicity of small chemical molecules in T. Pyriformis. Journal of Translational Toxicology, 1(1), 21–27. https://doi.org/10.1166/jtt.2014.1005
  • Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 100(12), 6986–6991. https://doi.org/10.1073/pnas.0832193100
  • Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2004). Structure of the dengue virus envelope protein after membrane fusion. Nature, 427(6972), 313–319. https://doi.org/10.1038/nature02165
  • Mondotte, J. A., Lozach, P.-Y., Amara, A., & Gamarnik, A. V. (2007). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. Journal of Virology, 81(13), 7136–7148. https://doi.org/10.1128/jvi.00116-07
  • Mukhopadhyay, S., Kuhn, R. J., & Rossmann, M. G. (2005). A structural perspective of the flavivirus life cycle. Nature Reviews. Microbiology, 3(1), 13–22. https://doi.org/10.1038/nrmicro1067
  • Munivenkatappa, A., Sahay, R., Yadav, P., Viswanathan, R., & Mourya, D. (2018). Clinical & epidemiological significance of Kyasanur forest disease. Indian Journal of Medical Research, 148(2), 145–150. https://doi.org/10.4103/ijmr.IJMR_688_17
  • Murhekar, M. V., Kasabi, G. S., Mehendale, S. M., Mourya, D. T., Yadav, P. D., & Tandale, B. V. (2015). On the transmission pattern of Kyasanur Forest disease (KFD) in India. Infectious Diseases of Poverty, 4(1), 1–4. https://doi.org/10.1186/s40249-015-0066-9
  • Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., Arenzana-Seisdedos, F., & Desprès, P. (2003). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Reports, 4(7), 723–728. https://doi.org/10.1038/sj.embor.embor866
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., Gregorio, G. G., Hendrickson, W. A., Kuhn, R. J., & Rossmann, M. G. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 124(3), 485–493. https://doi.org/10.1016/j.cell.2005.11.042
  • Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. In Nature, 375 (6529), 291–298. https://doi.org/10.1038/3752910
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Rosendahl, C., Cameron, A., Tschandl, P., Bulinska, A., Zalaudek, I., & Kittler, H. (2014). Prediction without pigment: A decision algorithm for non-pigmented skin malignancy. Dermatology Practical & Conceptual, 4(1), 59–66. https://doi.org/10.5826/dpc.04019
  • Kaufmann, B., Rossmann, M. G. (2011). Molecular mechanisms involved in the early steps of flavivirus cell entry. Microbes Infect, 13(1), 1–9. https://doi.org/10.1016/j.micinf.2010.09.005
  • Shah, S. Z., Jabbar, B., Ahmed, N., Rehman, A., Nasir, H., Nadeem, S., Jabbar, I., Ur Rahman, Z., & Azam, S. (2018). Epidemiology, pathogenesis, and control of a tick-borne disease- Kyasanur forest disease: Current status and future directions. Frontiers in Cellular and Infection Microbiology, 8(May), 149. https://doi.org/10.3389/fcimb.2018.00149
  • Sievers, F., & Higgins, D. G. (2018). Clustal omega for making accurate alignments of many protein sequences. Protein Science: A Publication of the Protein Society, 27(1), 135–145. https://doi.org/10.1002/pro.3290
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  • Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M. A., Pattanapanyasat, K., Sarasombath, S., Birx, D. L., Steinman, R. M., Schlesinger, S., & Marovich, M. A. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. The Journal of Experimental Medicine, 197(7), 823–829. https://doi.org/10.1084/jem.20021840
  • Thepparit, C., & Smith, D. R. (2004). Serotype-specific entry of dengue virus into liver cells: identification of the 37-Kilodalton/67-kilodalton high-affinity laminin receptor as a dengue virus serotype 1 receptor. Journal of Virology, 78(22), 12647–12656. https://doi.org/10.1128/JVI.78.22.12647-12656.2004
  • Trapido, H., Goverdhan, M. K., Rajagopalan, P. K., & Rebello, M. J. (1964). Ticks ectoparasitic on monkeys in the Kyasanur Forest Disease area of Shimoga district, Mysore, India. The American Journal of Tropical Medicine and Hygiene, 13, 763–772. volumehttps://doi.org/10.4269/ajtmh.1964.13.763
  • Vega-Almeida, T. O., Salas-Benito, M., De Nova-Ocampo, M. A., del Angel, R. M., & Salas-Benito, J. S. (2013). Surface proteins of C6/36 cells involved in dengue virus 4 binding and entry. Archives of Virology, 158(6), 1189–1207. https://doi.org/10.1007/s00705-012-1596-0
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Zhang, Y., Zhang, W., Ogata, S., Clements, D., Strauss, J. H., Baker, T. S., Kuhn, R. J., & Rossmann, M. G. (2004). Conformational changes of the flavivirus E glycoprotein. Structure (London, England : 1993), 12(9), 1607–1618. https://doi.org/10.1016/j.str.2004.06.019
  • Zhou, P., Jin, B., Li, H., & Huang, S. Y. (2018). HPEPDOCK: A web server for blind peptide-protein docking based on a hierarchical algorithm. Nucleic Acids Research, 46(W1), W443–W450. https://doi.org/10.1093/nar/gky357

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.