138
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Comprehending the intermolecular interaction of dacomitinib with bovine serum albumin: experimental and theoretical approaches

, , , &
Pages 3579-3592 | Received 30 Jan 2023, Accepted 08 May 2023, Published online: 08 Jun 2023

References

  • Abdelaziz, M. A., Shaldam, M., El-Domany, R. A., & Belal, F. (2022). Multi-spectroscopic, thermodynamic and molecular dynamic simulation studies for investigation of interaction of dapagliflozin with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 264, 120298. https://doi.org/10.1016/j.saa.2021.120298
  • Abdelhameed, A. S., Nusrat, S., Paliwal, S., Zaman, M., Zaidi, N., & Khan, R. H. (2017). A multitechnique approach to probe the interaction of a therapeutic tyrosine kinase inhibitor nintedanib and bovine serum albumin. Preparative Biochemistry & Biotechnology, 47(7), 655–663. https://doi.org/10.1080/10826068.2016.1275014
  • Alhazmi, H. A., Al Bratty, M., Meraya, A. M., Najmi, A., Alam, M. S., Javed, S. A., & Ahsan, W. (2021). Spectroscopic characterization of the interactions of bovine serum albumin with medicinally important metal ions: Platinum (IV), iridium (III) and iron (II). Acta Biochimica Polonic, 68, 99–107. https://doi.org/10.18388/abp.2020_5462
  • Bhimaneni, S. P., Bhati, V., Bhosale, S., & Kumar, A. (2021). Investigates interaction between abscisic acid and bovine serum albumin using various spectroscopic and in-silico techniques. Journal of Molecular Structure, 1224, 129018. https://doi.org/10.1016/j.molstruc.2020.129018
  • Bujacz, A. (2012). Structures of bovine, equine and leporine serum albumin. Acta Crystallographica. Section D, Biological Crystallography, 68(Pt 10), 1278–1289. https://doi.org/10.1107/s0907444912027047
  • Chamani, J., Wani, T. A., Bakheit, A. H., Zargar, S., Hamidaddin, M. A., & Darwish, I. A. (2017). Spectrophotometric and molecular modelling studies on in vitro interaction of tyrosine kinase inhibitor linifanib with bovine serum albumin. PloS One, 12(4), e0176015. https://doi.org/10.1371/journal.pone.0176015
  • Chi, Z., Hong, B., Ren, X., Cheng, K., Lu, Y., & Liu, X. (2018). Investigation on the conformational changes of bovine serum albumin in a wide pH range from 2 to 12. Spectroscopy Letters, 51(6), 279–286. https://doi.org/10.1080/00387010.2018.1471092
  • Dezhampanah, H., Esmaili, M., Dafrazi, A. A., & Mehdizadeh, P. (2019). Investigation of new indole derivatives of bovine serum albumin using spectroscopic and molecular docking techniques. Biotechnic & Histochemistry, 94(3), 167–179. https://doi.org/10.1080/10520295.2018.1537510
  • Fang, R., Jing, H., Chai, Z., Zhao, G., Stoll, S., Ren, F., Liu, F., & Leng, X. (2011). Study of the physicochemical properties of the BSA: Flavonoid nanoparticle. European Food Research and Technology, 233(2), 275–283. https://doi.org/10.1007/s00217-011-1522-9
  • Fang, F., Pan, D. Q., Qiu, M. J., Liu, T. T., Jiang, M., Wang, Q., & Shi, J. H. (2016). Probing into the binding interaction between medroxyprogesterone acetate and bovine serum albumin (BSA): Spectroscopic and molecular docking methods. Luminescence, 31(6), 1242–1250. https://doi.org/10.1002/bio.3097
  • Fofana, S., Delporte, C., Calvo Esposito, R., Ouédraogo, M., Van Antwerpen, P., Guissou, I. P., Semdé, R., & Mathieu, V. (2022). In vitro antioxidant and anticancer properties of various E. senegalensis extracts. Molecules, 27(8), 2583. https://doi.org/10.3390/molecules27082583
  • Foresman, J. B., & Frisch, A. (1996). Exploring chemistry with electronic structure methods (2nd ed.). Gaussian. ISBN 0-9636769-3-8.
  • Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52. https://doi.org/10.1016/j.jmb.2005.07.075
  • Golianová, K., Havadej, S., Verebová, V., Uličný, J., Holečková, B., & Staničová, J. (2021). Interaction of conazole pesticides epoxiconazole and prothioconazole with human and bovine serum albumin studied using spectroscopic methods and molecular modeling. International Journal of Molecular Sciences, 22(4), 1925. https://doi.org/10.3390/ijms22041925
  • Gu, J., Zheng, S., Huang, X., He, Q., & Sun, T. (2021). Exploring the mode of binding between butylated hydroxyanisole with bovine serum albumin: Multispectroscopic and molecular docking study. Food Chemistry, 357, 129771. https://doi.org/10.1016/j.foodchem.2021.129771
  • Haskard, C. A., & Li-Chan, E. C. Y. (1998). Hydrophobicity of bovine serum albumin and ovalbumin determined using uncharged (PRODAN) and anionic (ANS-) fluorescent probes. Journal of Agricultural and Food Chemistry, 46(7), 2671–2677. https://doi.org/10.1021/jf970876y
  • Jahanban-Esfahlan, A., Dastmalchi, S., & Davaran, S. (2016). A simple improved desolvation method for the rapid preparation of albumin nanoparticles. International Journal of Biological Macromolecules, 91, 703–709. https://doi.org/10.1016/j.ijbiomac.2016.05.032
  • Jahanban-Esfahlan, A., Davaran, S., & Dastmalchi, S. (2022). Preparation and antiproliferative activity evaluation of juglone-loaded BSA nanoparticles. Advanced Pharmaceutical Bulletin, 12(4), 818–827. https://doi.org/10.34172/apb.2022.087
  • Jahanban-Esfahlan, A., Ostadrahimi, A., Jahanban-Esfahlan, R., Roufegarinejad, L., Tabibiazar, M., & Amarowicz, R. (2019). Recent developments in the detection of bovine serum albumin. International Journal of Biological Macromolecules, 138, 602–617. https://doi.org/10.1016/j.ijbiomac.2019.07.096
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Jahanban-Esfahlan, R., Tabibiazar, M., & Amarowicz, R. (2020). Latest developments in the detection and separation of bovine serum albumin using molecularly imprinted polymers. Talanta, 207, 120317. https://doi.org/10.1016/j.talanta.2019.120317
  • Jahanban-Esfahlan, A., Roufegarinejad, L., Tabibiazar, M., Lorenzo, J., & Amarowicz, R. (2021). Exploring the interactions between caffeic acid and human serum albumin using spectroscopic and molecular docking techniques. Polish Journal of Food and Nutrition Sciences, 71, 69–77. https://doi.org/10.31883/pjfns/133203
  • Jiang, S. L., Hu, L., Wu, M., Li, L., & Shi, J. H. (2022). Assessment on binding characteristics of ethiprole and a model protein bovine serum albumin (BSA) through various spectroscopic techniques integrated with computer simulation. Journal of Biomolecular Structure and Dynamics, 1–12. (Online). https://doi.org/10.1080/07391102.2022.2126398
  • Jiang, S. L., Li, L., Hu, L., Kou, S. B., & Shi, J. H. (2023). Comprehending binding features between ibrutinib and Human Alpha-1 acid glycoprotein: Combined experimental approaches and theoretical simulations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 285, 121834. https://doi.org/10.1016/j.saa.2022.121834
  • Kelly, K., & Mikhaeel-Kamel, N. (1999). Medical treatment of lung cancer. Journal of Thoracic Imaging, 14(4), 257–265. https://doi.org/10.1097/00005382-199910000-00005
  • Khayyat, A. I. A., Zargar, S., Wani, T. A., Rehman, M. U., & Khan, A. A. (2022). Association mechanism and conformational changes in trypsin on its interaction with atrazine: A multi-spectroscopic and biochemical study with computational approach. International Journal of Molecular Sciences, 23(10), 5636. https://doi.org/10.3390/ijms23105636
  • Kim, D.-W., Garon, E. B., Jatoi, A., Keefe, D. M., Lacouture, M. E., Sonis, S., Gernhardt, D., Wang, T., Giri, N., Doherty, J. P., Nadanaciva, S., O'Connell, J., Sbar, E., & Cho, B. C. (2017). Impact of a planned dose interruption of dacomitinib in the treatment of advanced non-small-cell lung cancer (ARCHER 1042). Lung Cancer (Amsterdam, Netherlands), 106, 76–82. https://doi.org/10.1016/j.lungcan.2017.01.021
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J. H., & Liu, Y. X. (2021). Evaluation of the binding behavior of olmutinib (HM61713) with model transport protein: Insights from spectroscopic and molecular docking studies. Journal of Molecular Structure, 1224, 129024. https://doi.org/10.1016/j.molstruc.2020.129024
  • Kou, S. B., Lin, Z. Y., Wang, B. L., Shi, J.-H., & Liu, Y. X. (2021). Evaluation of the interaction of novel tyrosine kinase inhibitor apatinib mesylate with bovine serum albumin using spectroscopies and theoretical calculation approaches. Journal of Biomolecular Structure & Dynamics, 39(13), 4795–4806. https://doi.org/10.1080/07391102.2020.1782767
  • Li, B., Sun, Y., Lu, J., & Peng, X. (2021). Investigation on the binding interaction of rhodamine B with human serum albumin: Effect of metal ions. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 56(3), 259–271. https://doi.org/10.1080/03601234.2021.1873030
  • Lian, W., Liu, Y., Yang, H., Ma, H., Su, R., Han, X., Zhao, B., & Niu, L. (2019). Investigation of the binding sites and orientation of Norfloxacin on bovine serum albumin by surface enhanced Raman scattering and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 207, 307–312. https://doi.org/10.1016/j.saa.2018.09.034
  • Liu, X., Chen, X., Zhao, J., & Jiang, X. (2010). Effects of temperature and ions on binding dihydromyricetin to bovine serum albumin by spectroscopic method. Spectroscopy Letters, 43(3), 155–162. https://doi.org/10.1080/00387010903261230
  • Momeni, L., Mahmodian, S., Shareghi, B., Saboury, A. A., & Farhadian, S. (2017). The functional and structural stabilization of trypsin by sucrose. International Journal of Biological Macromolecules, 99, 343–349. https://doi.org/10.1016/j.ijbiomac.2017.02.090
  • Nakamura, K., Era, S., Ozaki, Y., Sogami, M., Hayashi, T., & Murakami, M. (1997). Conformational changes in seventeen cystine disulfide bridges of bovine serum albumin proved by Raman spectroscopy. FEBS Letters, 417(3), 375–378. https://doi.org/10.1016/s0014-5793(97)01326-4
  • Pawar, S. K., Naik, R. S., & Seetharamappa, J. (2017). Exploring the binding of two potent anticancer drugs bosutinib and imatinib mesylate with bovine serum albumin: spectroscopic and molecular dynamic simulation studies. Analytical and Bioanalytical Chemistry, 409(27), 6325–6335. https://doi.org/10.1007/s00216-017-0565-6
  • Qi, X., Xu, D., Zhu, J., Wang, S., Peng, J., Gao, W., & Cao, Y. (2021). Studying the interaction mechanism between bovine serum albumin and lutein dipalmitate: Multi-spectroscopic and molecular docking techniques. Food Hydrocolloids. 113, 106513. https://doi.org/10.1016/j.foodhyd.2020.106513
  • Ramalingam, S. S., Blackhall, F., Krzakowski, M., Barrios, C. H., Park, K., Bover, I., Seog Heo, D., Rosell, R., Talbot, D. C., Frank, R., Letrent, S. P., Ruiz-Garcia, A., Taylor, I., Liang, J. Q., Campbell, A. K., O'Connell, J., & Boyer, M. (2012). Randomized phase II study of dacomitinib (PF-00299804), an irreversible pan–human epidermal growth factor receptor inhibitor, versus erlotinib in patients with advanced non–small-cell lung cancer. Journal of Clinical Oncology, 30(27), 3337–3344. https://doi.org/10.1200/jco.2011.40.9433
  • Roufegarinejad, L., Amarowicz, R., & Jahanban-Esfahlan, A. (2019). Characterizing the interaction between pyrogallol and human serum albumin by spectroscopic and molecular docking methods. Journal of Biomolecular Structure & Dynamics, 37(11), 2766–2775. https://doi.org/10.1080/07391102.2018.1496854
  • Roufegarinejad, L., Jahanban-Esfahlan, A., Sajed-Amin, S., Panahi-Azar, V., & Tabibiazar, M. (2018). Molecular interactions of thymol with bovine serum albumin: Spectroscopic and molecular docking studies. Journal of Molecular Recognition : JMR, 31(7), e2704. https://doi.org/10.1002/jmr.2704
  • Roy, A. S., Tripathy, D. R., Chatterjee, A., & Dasgupta, S. (2013). The influence of common metal ions on the interactions of the isoflavone genistein with bovine serum albumin. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 102, 393–402. https://doi.org/10.1016/j.saa.2012.09.053
  • Ruiz-Garcia, A., Giri, N., LaBadie, R. R., Ni, G., Boutros, T., Richie, N., Kocinsky, H. S., Checchio, T. M., & Bello, C. L. (2014). A phase I open-label study to investigate the potential drug-drug interaction between single-dose dacomitinib and steady-state paroxetine in healthy volunteers. Journal of Clinical Pharmacology, 54(5), 555–562. https://doi.org/10.1002/jcph.243
  • Santarpia, M., Menis, J., Chaib, I., Cao, M. G., & Rosell, R. (2019). Dacomitinib for the first-line treatment of patients with EGFR-mutated metastatic non-small cell lung cancer. Expert Review of Clinical Pharmacology, 12(9), 831–840. https://doi.org/10.1080/17512433.2019.1649136
  • Shil, S., Das, N., Sengupta, B., & Sen, P. (2018). Sucrose-induced stabilization of domain-ii and overall human serum albumin against chemical and thermal denaturation. ACS Omega. 3(12), 16633–16642. https://doi.org/10.1021/acsomega.8b01832
  • Shirley, M. (2018). Dacomitinib: First global approval. Drugs, 78(18), 1947–1953. https://doi.org/10.1007/s40265-018-1028-x
  • Sudha, A., Srinivasan, P., Thamilarasan, V., & Sengottuvelan, N. (2016). Exploring the binding mechanism of 5-hydroxy-3′,4′,7-trimethoxyflavone with bovine serum albumin: Spectroscopic and computational approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 157, 170–181. https://doi.org/10.1016/j.saa.2015.12.028
  • Suo, Z., Xiong, X., Sun, Q., Zhao, L., Tang, P., Hou, Q., Zhang, Y., Wu, D., & Li, H. (2018). Investigation on the interaction of dabrafenib with human serum albumin using combined experiment and molecular dynamics simulation: Exploring the binding mechanism, esterase-like activity, and antioxidant activity. Molecular Pharmaceutics, 15(12), 5637–5645. https://doi.org/10.1021/acs.molpharmaceut.8b00806
  • Tian, Q. L., Liao, S. H., Lu, P., & Liu, L. J. (2006). Spectroscopic study on the interaction of Al3+ with flavonoids and BSA. Chinese Journal of Chemistry, 24(10), 1388–1390. https://doi.org/10.1002/cjoc.200690259
  • Wang, Q., Huang, C. R., Jiang, M., Zhu, Y. Y., Wang, J., Chen, J., & Shi, J. H. (2016). Binding interaction of atorvastatin with bovine serum albumin: Spectroscopic methods and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 156, 155–163. https://doi.org/10.1016/j.saa.2015.12.003
  • Wang, B. L., Kou, S. B., Lin, Z. Y., & Shi, J. H. (2020). Investigation on the binding behavior between BSA and lenvatinib with the help of various spectroscopic and in silico methods. Journal of Molecular Structure, 1204, 127521. https://doi.org/10.1016/j.molstruc.2019.127521
  • Wang, B. L., Pan, D. Q., Zhou, K. L., Lou, Y. Y., & Shi, J. H. (2019). Multi-spectroscopic approaches and molecular simulation research of the intermolecular interaction between the angiotensin-converting enzyme inhibitor (ACE inhibitor) benazepril and bovine serum albumin (BSA). Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 212, 15–24. https://doi.org/10.1016/j.saa.2018.12.040
  • Wani, T. A., Alanazi, M. M., Alsaif, N. A., Bakheit, A. H., Zargar, S., Alsalami, O. M., … Khan, A. A. (2022). Interaction characterization of a tyrosine kinase inhibitor Erlotinib with a model transport protein in the presence of quercetin: A drug–protein and drug–drug interaction investigation using multi-spectroscopic and computational approaches. Molecules, 27(4), 1265. https://doi.org/10.3390/molecules27041265
  • Wani, T. A., Alsaif, N. A., Alanazi, M. M., Bakheit, A. H., Khan, A. A., & Zargar, S. (2021). Binding of colchicine and ascorbic acid (vitamin C) to bovine serum albumin: An in-vitro interaction study using multispectroscopic, molecular docking and molecular dynamics simulation study. Journal of Molecular Liquids, 342, 117542. https://doi.org/10.1016/j.molliq.2021.117542
  • Wani, T. A., Alsaif, N., Bakheit, A. H., Zargar, S., Al-Mehizia, A. A., & Khan, A. A. (2020). Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorganic Chemistry, 100, 103957. https://doi.org/10.1016/j.bioorg.2020.103957
  • Wani, T., A., Bakheit, A. H., Zargar, S., Khayyat, A. I. A., & Al-Majed, A. A. (2022). Influence of rutin, sinapic acid, and naringenin on binding of tyrosine kinase inhibitor erlotinib to bovine serum albumin using analytical techniques along with computational approach. Applied Sciences, 12(7), 3575. https://doi.org/10.3390/app12073575
  • Wu, S., Wang, X., Bao, Y., Zhang, C., Liu, H., Li, Z., Chen, M., Wang, C., Guo, Q., & Peng, X. (2020). Molecular insight on the binding of monascin to bovine serum albumin (BSA) and its effect on antioxidant characteristics of monascin. Food Chemistry, 315, 126228. https://doi.org/10.1016/j.foodchem.2020.126228
  • Xue, M. Y., Yang, A. P., Ma, M. H., & Li, X. H. (2009). The application of two-dimensional fluorescence correlation spectroscopy on the interaction between bovine serum albumin and prulifloxacin. Spectroscopy, 23(5-6), 257–263. https://doi.org/10.1155/2009/565173
  • Yang, G., Su, C., Shi, Y., & Zhao, L. (2015). Tanshinone IIA-loaded bovine serum albumin nanoparticles for improving anti-cancer drug delivery. Nanoscience and Nanotechnology Letters, 7(5), 392–397. https://doi.org/10.1166/nnl.2015.1983
  • Zargar, S., & Wani, T. A. (2021). Exploring the binding mechanism and adverse toxic effects of persistent organic pollutant (dicofol) to human serum albumin: A biophysical, biochemical and computational approach. Chemico-Biological Interactions, 350, 109707. https://doi.org/10.1016/j.cbi.2021.109707
  • Zhang, R. J., Kou, S. B., Hu, L., Li, L., Shi, J. H., & Jiang, S. L. (2022). Exploring binding interaction of baricitinib with bovine serum albumin (BSA): Multi-spectroscopic approaches combined with theoretical calculation. Journal of Molecular Liquids, 354, 118831. https://doi.org/10.1016/j.molliq.2022.118831
  • Zhang, Y. F., Zhou, K. L., Lou, Y. Y., Pan, D. Q., & Shi, J. H. (2017). Investigation of the binding interaction between estazolam and bovine serum albumin: multi-spectroscopic methods and molecular docking technique. Journal of Biomolecular Structure & Dynamics, 35(16), 3605–3614. https://doi.org/10.1080/07391102.2016.1264889
  • Zhou, Y., Hu, X., Ouyang, D., Huang, J., & Wang, Y. (1994). The novel behaviour of interactions between Ni2+ ion and human or bovine serum albumin. Biochemical Journal, 304(1), 23–26. https://doi.org/10.1042/bj3040023
  • Zurawska-Plaksej, E., Wiglusz, R., Piwowar, A., & Wiglusz, K. (2021). In vitro investigation of binding interactions between albumin–gliclazide model and typical hypotensive drugs. International Journal of Molecular Sciences, 23(1), 286. https://doi.org/10.3390/ijms23010286

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.