168
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Elucidation of 7,8-dihydroxy flavone in complexing with the oxidative stress-inducing enzymes, its impact on radical quenching and DNA damage: an in silico and in vitro approach

ORCID Icon, , , , , , & ORCID Icon show all
Pages 4048-4063 | Received 25 Jan 2023, Accepted 21 May 2023, Published online: 01 Jun 2023

References

  • Afsar, T., Razak, S., Khan, M. R., Mawash, S., Almajwal, A., Shabir, M., & Haq, I. U. (2016). Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC Complementary and Alternative Medicine, 16(1), 1–16. https://doi.org/10.1186/s12906-016-1240-8
  • Arnhold, J., & Flemmig, J. (2010). Human myeloperoxidase in innate and acquired immunity. Archives of Biochemistry and Biophysics, 500(1), 92–106. https://doi.org/10.1016/j.abb.2010.04.008
  • Arnold, K. (2006). The SWISSMODEL workspace: A web-based environment for protein structure homology modilling. Bioinformatics, 22, 195–201. https://doi.org/10.1093/bioinformatics/bti770
  • Balasubramanian, B., Pogozelski, W. K., & Tullius, T. D. (1998). DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 9738–9743. https://doi.org/10.1073/pnas.95.17.9738
  • Bandari, S. K., Kammari, B. R., Madda, J., Kommu, N., Lakkadi, A., Vuppala, S., & Tigulla, P. (2017). Synthesis of new chromeno-carbamodithioate derivatives and preliminary evaluation of their antioxidant activity and molecular docking studies. Bioorganic & Medicinal Chemistry Letters, 27(5), 1256–1260. https://doi.org/10.1016/j.bmcl.2017.01.047
  • Berry, M., Fielding, B., & Gamieldien, J. (2015). Practical considerations in virtual screening and molecular docking. In Emerging trends in computational biology, bioinformatics, and systems biology (pp. 487–502). https://doi.org/10.1016/B978-0-12-802508-6.00027-2
  • Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. The World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
  • Cerón-Carrasco, J. P. (2022). When virtual screening yields inactive drugs: Dealing with false theoretical friends. ChemMedChem, 17(16), e202200278. https://doi.org/10.1002/cmdc.202200278
  • Chan Gomez, J., Saleem, T., Snyder, S., Joseph, M., & Kanderi, T. (2020). Drug-induced immune hemolytic anemia due to Amoxicillin-Clavulanate: A case report and review. Cureus, 12(6), e8666. https://doi.org/10.7759/cureus.8666
  • Chen, Y. T., Zheng, R. L., Jia, Z. J., & Ju, Y. (1990). Flavonoids as superoxide scavengers and antioxidants. Free Radical Biology & Medicine, 9(1), 19–21. https://doi.org/10.1016/0891-5849(90)90045-k
  • Chiang, N. N., Lin, T. H., Teng, Y. S., Sun, Y. C., Chang, K. H., Lin, C. Y., Hsieh-Li, H. M., Su, M. T., Chen, C. M., & Lee-Chen, G. J. (2021). Flavones 7,8-DHF, quercetin, and apigenin against tau toxicity via activation of TRKB signaling in ΔK280 TauRD-DsRed SH-SY5Y cells. Frontiers in Aging Neuroscience, 13, 758895. https://doi.org/10.3389/fnagi.2021.758895
  • Chitranshi, N., Gupta, V., Kumar, S., & Graham, S. L. (2015). Exploring the molecular interactions of 7,8-dihydroxyflavone and its derivatives with TrkB and VEGFR2 proteins. International Journal of Molecular Sciences, 16(9), 21087–21108. https://doi.org/10.3390/ijms160921087
  • Collins, A. R. (2004). The comet assay for DNA damage and repair. Molecular Biotechnology, 26(3), 249–261. https://doi.org/10.1385/MB:26:3:249
  • Costa, J., Ramos, R., Costa, K., Brasil, D., Silva, C., Ferreira, E., Borges, R., Campos, J., Macêdo, W., & Santos, C. (2018). An in silico study of the antioxidant ability for two caffeine analogs using molecular docking and quantum chemical methods. Molecules, 23(11), 2801. https://doi.org/10.3390/molecules23112801
  • Devi, L., & Ohno, M. (2012). 7, 8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology : official Publication of the American College of Neuropsychopharmacology, 37(2), 434–444. https://doi.org/10.1038/npp.2011.191
  • Dharmaraja, A. T. (2017). Role of reactive oxygen species in therapeutics and drug resistance in cancer and bacteria. Journal of Medicinal Chemistry, 60(8), 3221–3240. https://doi.org/10.1021/acs.jmedchem.6b01243
  • Dipankar, P., Kumar, P., & Sarangi, P. P. (2023). In silico identification and characterization of small-molecule inhibitors specific to RhoG/Rac1 signaling pathway. Journal of Biomolecular Structure and Dynamics, 41(2), 560–580. https://doi.org/10.1080/07391102.2021.2009032
  • Dobrovolskaia, M. A., & McNeil, S. E. (2013). Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. Journal of Controlled Release: Official Journal of the Controlled Release Society, 172(2), 456–466. https://doi.org/10.1016/j.jconrel.2013.05.025
  • Evans, B. C., Nelson, C. E., Yu, S. S., Beavers, K. R., Kim, A. J., Li, H., Nelson, H. M., Giorgio, T. D., & Duvall, C. L. (2013). Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. Journal of Visualized Experiments, 73, e50166. https://doi.org/10.3791/50166
  • Farag, M. R., & Alagawany, M. (2018). Erythrocytes as a biological model for screening of xenobiotics toxicity. Chemico-Biological Interactions, 279, 73–83. https://doi.org/10.1016/j.cbi.2017.11.007
  • Favié, L. M. A., Cox, A. R., van den Hoogen, A., Nijboer, C. H. A., Peeters-Scholte, C. M. P. C. D., van Bel, F., Egberts, T. C. G., Rademaker, C. M. A., & Groenendaal, F. (2018). Nitric oxide synthase inhibition as a neuroprotective strategy following hypoxic–ischemic encephalopathy: Evidence from animal studies. Frontiers in Neurology, 9, 258. https://doi.org/10.3389/fneur.2018.00258
  • Fliszár-Nyúl, E., Mohos, V., Bencsik, T., Lemli, B., Kunsági-Máté, S., & Poór, M. (2019). Interactions of 7,8-dihydroxyflavone with serum albumin as well as with CYP2C9, CYP2C19, CYP3A4, and xanthine oxidase biotransformation enzymes. Biomolecules, 9(11), 655. https://doi.org/10.3390/biom9110655
  • Hayes, J. D., Dinkova-Kostova, A. T., & Tew, K. D. (2020). Oxidative stress in cancer. Cancer Cell, 38(2), 167–197. https://doi.org/10.1016/j.ccell.2020.06.001
  • Hui, H., & Gao, W. (2022). Physicochemical features and antioxidant activity of polysaccharides from Herba Patriniae by gradient ethanol precipitation. Arabian Journal of Chemistry, 15(5), 103770. https://doi.org/10.1016/j.arabjc.2022.103770
  • Huyut, Z., Beydemir, Ş., & Gülçin, İ. (2017). Antioxidant and antiradical properties of selected flavonoids and phenolic compounds. Biochemistry Research International, 2017, 7616791. https://doi.org/10.1155/2017/7616791
  • Kaur, P., & Arora, S. (2009). Superoxide anion radical scavenging activity of Cassia siamea and Cassia javanica. Medicinal Chemistry Research, 20(1), 9–15. https://doi.org/10.1007/s00044-009-9274-9
  • Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
  • Konaté, M. M., Antony, S., & Doroshow, J. H. (2020). Inhibiting the activity of NADPH oxidase in cancer. Antioxidants & Redox Signaling, 33(6), 435–454. https://doi.org/10.1089/ars.2020.8046
  • Kumar, S., & Pandey, A. K. (2013). Chemistry and biological activities of flavonoids: An overview. TheScientificWorldJournal, 2013, 162750. https://doi.org/10.1155/2013/162750
  • Li, C., Wang, E., Elshikh, M. S., Alwahibi, M. S., Wang, W., Wu, G., Shen, Y., Abbasi, A. M., & Shan, S. (2021). Extraction and purification of total flavonoids from Gnaphalium affine D. Don and their evaluation for free radicals’ scavenging and oxidative damage inhabitation potential in mice liver. Arabian Journal of Chemistry, 14(3), 103006. https://doi.org/10.1016/j.arabjc.2021.103006
  • Lin, H. M., Yen, F. L., Ng, L. T., & Lin, C. C. (2007). Protective effects of Ligustrum lucidum fruit extract on acute butylated hydroxytoluene-induced oxidative stress in rats. Journal of Ethnopharmacology, 111(1), 129–136. https://doi.org/10.1016/j.jep.2006.11.004
  • Lipinski, B. (2011). Hydroxyl radical and its scavengers in health and disease. Oxidative Medicine and Cellular Longevity, 2011, 809696. https://doi.org/10.1155/2011/809696
  • Liu, C., Chan, C. B., & Ye, K. (2016). 7, 8-Dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Translational Neurodegeneration, 5(1), 2. https://doi.org/10.1186/s40035-015-0048-
  • Ma, R., Zhang, J., Liu, X., Yue, S., Zhao, Q., & Xu, Y. (2016). 7, 8-DHF treatment induces Cyr61 expression to suppress hypoxia induced ER stress in HK-2 cells. BioMed Research International, 2016, 5029797. https://doi.org/10.1155/2016/5029797
  • Mir, I. H., Guha, S., Behera, J., & Thirunavukkarasu, C. (2021). Targeting molecular signal transduction pathways in hepatocellular carcinoma and its implications for cancer therapy. Cell Biology International, 45(11), 2161–2177. https://doi.org/10.1002/cbin.11670
  • Mir, I. H., Jyothi, K. C., & Thirunavukkarasu, C. (2022). The prominence of potential biomarkers in the diagnosis and management of hepatocellular carcinoma: Current scenario and future anticipation. Journal of Cellular Biochemistry, 123(10), 1607–1623. https://doi.org/10.1002/jcb.30190
  • Moukette, B. M., Anatole, P. C., Biapa, C. P. N., Njimou, J. R., & Ngogang, J. Y. (2015). Free radicals quenching potential, protective properties against oxidative mediated ion toxicity and HPLC phenolic profile of a Cameroonian spice: Piper guineensis. Toxicology Reports, 2, 792–805. https://doi.org/10.1016/j.toxrep.2015.02.007
  • Mukhopadhyay, D., Dasgupta, P., Roy, D. S., Palchoudhuri, S., Chatterjee, I., Ali, S., & Dastidar, S. G. (2016). A sensitive in vitro spectrophotometric hydrogen peroxide scavenging assay using 1, 10-phenanthroline. Free Radicals and Antioxidants, 6(1), 124–132. https://doi.org/10.5530/fra.2016.1.15
  • Preedia Babu, E., Subastri, A., Suyavaran, A., Premkumar, K., Sujatha, V., Aristatile, B., Alshammari, G. M., Dharuman, V., & Thirunavukkarasu, C. (2017). Size dependent uptake and hemolytic effect of zinc oxide nanoparticles on erythrocytes and biomedical potential of ZnO-ferulic acid conjugates. Scientific Reports, 7(1), 1–12. https://doi.org/10.1038/s41598-017-04440-y
  • Prieto-Bermejo, R., & Hernández-Hernández, A. (2017). The importance of NADPH oxidases and redox signaling in angiogenesis. Antioxidants, 6(2), 32. https://doi.org/10.3390/antiox6020032
  • Ramesh, D., Mohanty, A. K., De, A., Vijayakumar, B. G., Sethumadhavan, A., Muthuvel, S. K., Mani, M., & Kannan, T. (2022). Uracil derivatives as HIV-1 capsid protein inhibitors: Design, in silico, in vitro and cytotoxicity studies. RSC Advances, 12(27), 17466–17480. https://doi.org/10.1039/d2ra02450k
  • Sabuncuoğlu, S., & Söhretoğlu, D. (2012). Evaluation of antihemolytic and antioxidant activities of Geranium tuberosum subsp. tuberosum with in vitro models. Pharmaceutical Biology, 50(11), 1374–1379. https://doi.org/10.3109/13880209.2012.675340
  • Sanders, L. H., & Greenamyre, J. T. (2013). Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radical Biology & Medicine, 62, 111–120. https://doi.org/10.1016/j.freeradbiomed.2013.01.003
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Satyanarayana, S. D., Krishna, M. S. R., Kumar, P. P., & Jeereddy, S. (2018). In silico structural homology modeling of nif A protein of Rhizobial strains in selective legume plants. Journal, Genetic Engineering & Biotechnology, 16(2), 731–737. https://doi.org/10.1016/j.jgeb.2018.06.006
  • Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., … Sharifi-Rad, J. (2020). Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology, 11, 694. https://doi.org/10.3389/fphys.2020.00694
  • Söhretoğlu, D., Sabuncuoğlu, S., & Harput, U. Ş. (2012). Evaluation of antioxidative, protective effect against H2O2 induced cytotoxicity, and cytotoxic activities of three different Quercus species. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 50(2), 141–146. https://doi.org/10.1016/j.fct.2011.10.061
  • Sroka, Z., & Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 41(6), 753–758. https://doi.org/10.1016/s0278-6915(02)00329-0
  • Svegliati, S., Spadoni, T., Moroncini, G., & Gabrielli, A. (2018). NADPH oxidase, oxidative stress and fibrosis in systemic sclerosis. Free Radical Biology & Medicine, 125, 90–97. https://doi.org/10.1016/j.freeradbiomed.2018.04.554
  • Van der Veen, B. S., de Winther, M. P., & Heeringa, P. (2009). Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxidants & Redox Signaling, 11(11), 2899–2937. https://doi.org/10.1089/ars.2009.2538
  • Verhagen, H., Schilderman, P. A., & Kleinjans, J. C. (1991). Butylated hydroxyanisole in perspective. Chemico-Biological Interactions, 80(2), 109–134. https://doi.org/10.1016/0009-2797(91)90019-4
  • Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1. https://doi.org/10.4103/0250-474X.102537
  • Warrington, R., Silviu-Dan, F., & Wong, T. (2018). Drug allergy. Allergy, Asthma & Clinical Immunology, 14(S2), 1–11. https://doi.org/10.1186/s13223-018-0289-y
  • Xu, H., Li, C., Mozziconacci, O., Zhu, R., Xu, Y., Tang, Y., Chen, R., Huang, Y., Holzbeierlein, J. M., Schöneich, C., Huang, J., & Li, B. (2019). Xanthine oxidase-mediated oxidative stress promotes cancer cell-specific apoptosis. Free Radical Biology & Medicine, 139, 70–79. https://doi.org/10.1016/j.freeradbiomed.2019.05.019
  • Yu, G., Liang, Y., Zheng, S., & Zhang, H. (2018). Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces oxidative stress–mediated inflammation, neuronal damage, and neural stem cell injury in a murine model of stroke. The Journal of Pharmacology and Experimental Therapeutics, 364(2), 311–322. https://doi.org/10.1124/jpet.117.245688
  • Zhang, M., Zhou, S., Obaid, N. H., Altimari, U. S., Adel Mohammed, M., Kareem Obaid Aldulaim, A., Salaam Abood, E., Kotb, H., Enayati, A., Khori, V., Mirzaei, H., Salehi, A., Soltani, A., Sani Sarjadi, M., & Lutfor Rahman, M. (2022). Chromenone-based GSK-3β inhibitors as potential therapeutic targets for cardiovascular diseases: In silico study, molecular dynamics, and ADMET profiles. Arabian Journal of Chemistry, 15(12), 104288. https://doi.org/10.1016/j.arabjc.2022.104288
  • Zhang, R., Kang, K. A., Piao, M. J., Ko, D. O., Wang, Z. H., Chang, W. Y., You, H. J., Lee, I. K., Kim, B. J., Kang, S. S., & Hyun, J. W. (2009). Preventive effect of 7, 8-dihydroxyflavone against oxidative stress induced genotoxicity. Biological & Pharmaceutical Bulletin, 32(2), 166–171. https://doi.org/10.1248/bpb.32.166
  • Zheleva-Dimitrova, D., Nedialkov, P., & Kitanov, G. (2010). Radical scavenging and antioxidant activities of methanolic extracts from Hypericum species growing in Bulgaria. Pharmacognosy Magazine, 6(22), 74. https://doi.org/10.4103/0973-1296.62889
  • Zhong, S., Huang, K., Luo, S., Dong, S., & Duan, L. (2020). Improving the performance of the MM/PBSA and MM/GBSA methods in recognizing the native structure of the Bcl-2 family using the interaction entropy method. Physical Chemistry Chemical Physics: PCCP, 22(7), 4240–4251. https://doi.org/10.1039/c9cp06459a

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.