104
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

In silico and in vitro investigation of dual targeting Prima-1MET as precision therapeutic against lungs cancer

, &
Pages 4169-4184 | Received 30 Dec 2022, Accepted 23 May 2023, Published online: 05 Jun 2023

References

  • Ahmad Mir, S., Meher, R. K., Baitharu, I., & Nayak, B. (2022a). Molecular dynamic simulation, free binding energy calculation of thiazolo-[2,3-b]quinazolinone derivatives against EGFR-TKD and their anticancer activity. Results in Chemistry, 4, 100418. https://doi.org/10.1016/j.rechem.2022.100418
  • Ahmad Mir, S., Paramita Mohanta, P., Kumar Meher, R., Baitharu, I., Kumar Raval, M., Kumar Behera, A., & Nayak, B. (2022b). Structural insights into conformational stability and binding of thiazolo-[2,3-b] quinazolinone derivatives with EGFR-TKD and in-vitro study. Saudi Journal of Biological Sciences, 29(12), 103478. https://doi.org/10.1016/j.sjbs.2022.103478
  • Behera, S., Monalisa, K., Meher, R. K., Mohapatra, S., Madkami, S. K., Das, P. K., Naik, P. K., & Naik, S. K. (2022). Phytochemical fidelity and therapeutic activity of micropropagated Curcuma amada Roxb.: A valuable medicinal herb. Industrial Crops and Products, 176, 114401. https://doi.org/10.1016/j.indcrop.2021.114401
  • Bieging, K. T., Mello, S. S., & Attardi, L. D. (2014). Unravelling mechanisms of p53-mediated tumour suppression. Nature Reviews. Cancer, 14(5), 359–370. https://doi.org/10.1038/nrc3711
  • Borkotoky, S., & Murali, A. (2018). A computational assessment of pH-dependent differential interaction of T7 lysozyme with T7 RNA polymerase. BMC Structural Biology, 17(1), 1–11. https://doi.org/10.1186/s12900-017-0077-9
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
  • Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: Understanding tumorigenic mutations. Science (New York, N.Y.), 265(5170), 346–355. https://doi.org/10.1126/science.8023157
  • Christensen, C. L., Zandi, R., Gjetting, T., Cramer, F., & Poulsen, H. S. (2009). Specifically targeted gene therapy for small-cell lung cancer. Expert Review of Anticancer Therapy, 9(4), 437–452. https://doi.org/10.1586/era.09.10
  • Cooper, S., & Spiro, S. G. (2006). Small cell lung cancer: Treatment review. Respirology (Carlton, Vic.), 11(3), 241–248. https://doi.org/10.1111/j.1440-1843.2006.00850.x
  • Díaz-Serrano, A., Gella, P., Jiménez, E., Zugazagoitia, J., & Paz-Ares Rodriguez, L. (2018). Targeting EGFR in lung cancer: Current standards and developments. Drugs, 78(9), 893–911. https://doi.org/10.1007/s40265-018-0916-4
  • Fuster, J. J., Sanz-Gonzalez, S. M., Moll, U. M., & Andres, V. (2007). Classic and novel roles of p53: Prospects for anticancer therapy. Trends in Molecular Medicine, 13(5), 192–199. https://doi.org/10.1016/j.molmed.2007.03.002
  • Gan, B. K., Rullah, K., Yong, C. Y., Ho, K. L., Omar, A. R., Alitheen, N. B., & Tan, W. S. (2020). Targeted delivery of 5-fluorouracil-1-acetic acid (5-FA) to cancer cells overexpressing epithelial growth factor receptor (EGFR) using virus-like nanoparticles. Scientific Reports, 10(1), 1–15. https://doi.org/10.1038/s41598-020-73967-4
  • Giaime, E., Yamaguchi, H., Gautier, C. A., Kitada, T., & Shen, J. (2012). Loss of DJ-1 does not affect mitochondrial respiration but increases ROS production and mitochondrial permeability transition pore opening. PLoS One, 7(7), e40501. https://doi.org/10.1371/journal.pone.0040501
  • Herbst, R. S., Heymach, J. V., & Lippman, S. M. (2008). Lung cancer. The New England Journal of Medicine, 359(13), 1367–1380. https://doi.org/10.1056/NEJMra0802714
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1021/ct5007983
  • Jo, S., Kim, T., Iyer, V. G., & Im, W. (2008). CHARMM‐GUI: A web‐based graphical user interface for CHARMM. Journal of Computational Chemistry, 29(11), 1859–1865. https://doi.org/10.1002/jcc.20945
  • Kandoth, C., McLellan, M. D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J. F., Wyczalkowski, M. A., Leiserson, M. D. M., Miller, C. A., Welch, J. S., Walter, M. J., Wendl, M. C., Ley, T. J., Wilson, R. K., Raphael, B. J., & Ding, L. (2013). Mutational landscape and significance across 12 major cancertypes. Nature, 502(7471), 333–339. https://doi.org/10.1038/nature12634
  • Kashefolgheta, S., & Verde, A. V. (2017). Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions. Physical Chemistry Chemical Physics, 19(31), 20593–20607. https://doi.org/10.1039/c7cp02557b
  • Khaddour, K., Jonna, S., Deneka, A., Patel, J. D., Abazeed, M. E., Golemis, E., Borghaei, H., & Boumber, Y. (2021). Targeting the epidermal growth factor receptor in EGFR-mutated lung cancer: Current and emerging therapies. Cancers, 13(13), 3164. https://doi.org/10.3390/cancers13133164
  • Khalifa, I., Nawaz, A., Sobhy, R., Althwab, S. A., & Barakat, H. (2020). Polyacylated anthocyanins constructively network with catalytic dyad residues of 3CLpro of 2019-nCoV than monomeric anthocyanins: A structural-relationship activity study with 10 anthocyanins using in-silico approaches. Journal of Molecular Graphics & Modelling, 100, 107690. https://doi.org/10.1016/j.jmgm.2020.107690
  • Kruiswijk, F., Labuschagne, C. F., & Vousden, K. H. (2015). P53 in survival death and metabolic health: A lifeguard with a licence to kill. Nature Reviews. Molecular Cell Biology, 16(7), 393–405. https://doi.org/10.1038/nrm4007
  • Kumari, R., Kumar, R., Lynn, A., & Open Source Drug Discovery Consortium. (2014). OpenSource Drug Discovery Consortium and Lynn, g_mmpbsa A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lally, B. E., Urbanic, J. J., Blackstock, A. W., Miller, A. A., & Perry, M. C. (2007). Small cell lung cancer: Have we made any progress over the last 25 years? The Oncologist, 12(9), 1096–1104. https://doi.org/10.1634/theoncologist.12-9-1096
  • Lambert, J. M. R., Gorzov, P., Veprintsev, D. B., Söderqvist, M., Segerbäck, D., Bergman, J., Fersht, A. R., Hainaut, P., Wiman, K. G., & Bykov, V. J. N. (2009). PRIMA-1 reactivates mutant p53 by covalent binding to the core domain. Cancer Cell, 15(5), 376–388. https://doi.org/10.1016/j.ccr.2009.03.003
  • Levine, A. J. (2020). p53: 800 million years of evolution and 40 years of discovery. Nature Reviews. Cancer, 20(8), 471–480. https://doi.org/10.1038/s41568-020-0262-1
  • Levine, A. J. (2022). Targeting the P53 protein for cancer therapies: The translational impact of P53 research. Cancer Research, 82(3), 362–364. https://doi.org/10.1158/0008-5472.CAN-21-2709
  • Lindorff‐Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side‐chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711
  • Lopez-Gines, C., Gil-Benso, R., Ferrer-Luna, R., Benito, R., Serna, E., Gonzalez-Darder, J., Quilis, V., Monleon, D., Celda, B., & Cerdá-Nicolas, M. (2010). New pattern of EGFR amplification in glioblastoma and the relationship of gene copy number with gene expression profile. Modern Pathology, 23(6), 856–865. https://doi.org/10.1038/modpathol.2010.62
  • Luo, J., Solimini, N. L., & Elledge, S. J. (2009). Principles of cancer therapy: Oncogene and non-oncogene addiction. Cell, 136(5), 823–837. https://doi.org/10.1016/j.cell.2009.02.024
  • Lyublinskaya, O. G., Ivanova, J. S., Pugovkina, N. A., Kozhukharova, I. V., Kovaleva, Z. V., Shatrova, A. N., Aksenov, N. D., Zenin, V. V., Kaulin, Y. A., Gamaley, I. A., & Nikolsky, N. N. (2017). Redox environment in stem and differentiated cells: A quantitative approach. Redox Biology, 12, 758–769. https://doi.org/10.1016/j.redox.2017.04.016
  • Meher, R. K., Nagireddy, P. K. R., Pragyandipta, P., Kantevari, S., Singh, S. K., Kumar, V., & Naik, P. K. (2022a). In silico design of novel tubulin binding 9-arylimino derivatives of noscapine, their chemical synthesis and cellular activity as potent anticancer agents against breast cancer. Journal of Biomolecular Structure & Dynamics, 40(15), 6725–6736. https://doi.org/10.1080/07391102.2021.1889668
  • Meher, R. K., Naik, M. R., Bastia, B., & Naik, P. K. (2018). Comparative evaluation of anti-angiogenic effects of noscapine derivatives. Bioinformation, 14(5), 236–240. https://doi.org/10.6026/97320630014236
  • Meher, R. K., Pragyandipta, P., Pedapati, R. K., Nagireddy, P. K., Kantevari, S., Nayek, A. K., & Naik, P. K. (2021). Rational design of novel N‐alkyl amine analogues of noscapine, their chemical synthesis and cellular activity as potent anticancer agents. Chemical Biology & Drug Design, 98(3), 445–465. https://doi.org/10.1111/cbdd.13901
  • Meric, F., Lee, W. P., Sahin, A., Zhang, H., Kung, H. J., & Hung, M. C. (2002). Expression profile of tyrosine kinases in breast cancer. Clinical Cancer Research, 8(2), 361–367.
  • Mir, S. A., Dash, G. C., Meher, R. K., Mohanta, P. P., Chopdar, K. S., Mohapatra, P. K., Baitharu, I., Behera, A. K., Raval, M. K., & Nayak, B. (2022). In silico and in vitro evaluations of fluorophoric thiazolo-[2,3-b]quinazolinones as anti-cancer agents targeting EGFR-TKD. Applied Biochemistry and Biotechnology, 194(10), 4292–4318. https://doi.org/10.1007/s12010-022-03893-w
  • Mir, S. A., Meher, R. K., & Nayak, B. (2023a). Molecular modeling and simulations of some antiviral drugs, benzylisoquinoline alkaloid, and coumarin molecules to investigate the effects on Mpro main viral protease inhibition. Biochemistry and Biophysics Reports, 34, 101459. https://doi.org/10.1016/j.bbrep.2023.101459
  • Mir, S. A., Muhammad, A., Padhiary, A., Ekka, N. J., Baitharu, I., Naik, P. K., & Nayak, B. (2023b). Identification of potent EGFR-TKD inhibitors from NPACT database through combined computational approaches. Journal of Biomolecular Structure and Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2171133
  • Mir, S. A., & Nayak, B. (2022). In silico analysis of binding stability of quercetin with CmpA and in vitro growth inhibition study of cyanobacterial species using Azadirachta indica extracts. Chemistry Africa, 5(3), 691–701. https://doi.org/10.1007/s42250-022-00335-2
  • Mir, S. A., & Nayak, B. (2023). Exploring binding stability of hydroxy-3-(4-hydroxyphenyl)-5-(4-nitrophenyl)-5,5a,7,8,9,9a-hexahydrothiazolo[2,3-b] quinazolin-6-one with T790M/L858R EGFR-TKD. Journal of Biomolecular Structure & Dynamics, 41(8), 3702–3716. https://doi.org/10.1080/07391102.2022.2053748
  • Muller, P. A., & Vousden, K. H. (2014). Mutant p53 in cancer: New functions and therapeutic opportunities. Cancer Cell, 25(3), 304–317. https://doi.org/10.1016/j.ccr.2014.01.021
  • Ongkeko, W. M., Altuna, X., Weisman, R. A., & Wang-Rodriguez, J. (2005). Expression of protein tyrosine kinases in head and neck squamous cell carcinomas. American Journal of Clinical Pathology, 124(1), 71–76. https://doi.org/10.1309/BTLN5WTMJ3PCNRRC
  • Patel, A. K., Meher, R. K., Nagireddy, P. K., Pragyandipta, P., Pedapati, R. K., Kantevari, S., & Naik, P. K. (2021). 9-Arylimino noscapinoids as potent tubulin binding anticancer agent: Chemical synthesis and cellular evaluation against breast tumour cells. SAR and QSAR in Environmental Research, 32(4), 269–291. https://doi.org/10.1080/1062936X.2021.1891567
  • Pereira, G. R. C., Da Silva, A. N. R., Do Nascimento, S. S., & De Mesquita, J. F. (2019). In silico analysis and molecular dynamics simulation of human superoxide dismutase 3 (SOD3) genetic variants. Journal of Cellular Biochemistry, 120(3), 3583–3598. https://doi.org/10.1002/jcb.27636
  • Rodríguez-Antona, C., Pallares, J., Montero-Conde, C., Inglada-Pérez, L., Castelblanco, E., Landa, I., Leskelä, S., Leandro-García, L. J., López-Jiménez, E., Letón, R., Cascón, A., Lerma, E., Martin, M. C., Carralero, M. C., Mauricio, D., Cigudosa, J. C., Matias-Guiu, X., & Robledo, M. (2010). Overexpression and activation of EGFR and VEGFR2 in medullary thyroid carcinomas is related to metastasis. Endocrine-Related Cancer, 17(1), 7–16. https://doi.org/10.1677/ERC-08-0304
  • Saluja, T. S., Kumar, V., Agrawal, M., Tripathi, A., Meher, R. K., Srivastava, K., Gupta, A., Singh, A., Chaturvedi, A., & Singh, S. K. (2020). Mitochondrial stress–mediated targeting of quiescent cancer stem cells in oral squamous cell carcinoma. Cancer Management and Research, 12, 4519–4530. https://doi.org/10.2147/CMAR.S252292
  • Samal, S., Meher, R., Dubey, D., Mir, S., Nayak, B., Sahu, M., Naik, P., Rath, G., & Swain, S. (2022). In-silico and in-vitro evaluation of docetaxel and berberine as potential p53 modulating apoptotic inducers in oral squamous cell carcinoma. Asian Pacific Journal of Tropical Biomedicine, 12(12), 530. https://doi.org/10.4103/2221-1691.363879
  • Selvaggi, G., Novello, S., Torri, V., Leonardo, E., De Giuli, P., Borasio, P., Mossetti, C., Ardissone, F., Lausi, P., & Scagliotti, G. V. (2004). Epidermal growth factor receptor overexpression correlates with a poor prognosis in completely resected non-small-cell lung cancer. Annals of Oncology, 15(1), 28–32. https://doi.org/10.1093/annonc/mdh011
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE-Antechamber python parser interface. BMC Research Notes, 5(1), 1–8. https://doi.org/10.1186/1756-0500-5-367
  • Stamos, J., Sliwkowski, M. X., & Eigenbrot, C. (2002). Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of Biological Chemistry, 277(48), 46265–46272. https://doi.org/10.1074/jbc.M207135200
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tessoulin, B., Descamps, G., Dousset, C., Amiot, M., & Pellat-Deceunynck, C. (2019). Targeting oxidative stress with auranofin or Prima-1MET to Circumvent p53 or Bax/Bak deficiency in myeloma cells. Frontiers in Oncology, 9, 128. https://doi.org/10.3389/fonc.2019.00128
  • Viktorsson, K., De Petris, L., & Lewensohn, R. (2005). The role of p53 in treatment responses of lung cancer. Biochemical and Biophysical Research Communications, 331(3), 868–880. https://doi.org/10.1016/j.bbrc.2005.03.192
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2006). Automatic atom type and bond type perception in molecular mechanical calculations. Journal of Molecular Graphics & Modelling, 25(2), 247–260. https://doi.org/10.1016/j.jmgm.2005.12.005
  • Yuan, M., Huang, L. L., Chen, J. H., Wu, J., & Xu, Q. (2019). The emerging treatment landscape of targeted therapy in non-small-cell lung cancer. Signal Transduction and Targeted Therapy, 4(1), 1–14. https://doi.org/10.1038/s41392-019-0099-9
  • Zandi, R., Selivanova, G., Christensen, C. L., Gerds, T. A., Willumsen, B. M., & Poulsen, H. S. (2011). PRIMA-1Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53PRIMA-1Met induced cytotoxicity in SCLC. Clinical Cancer Research, 17(9), 2830–2841. https://doi.org/10.1158/1078-0432.CCR-10-3168

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.