146
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Semi-synthesized anticancer theobromine derivatives targeting VEGFR-2: in silico and in vitro evaluations

ORCID Icon, , ORCID Icon, , , , , , , , ORCID Icon & ORCID Icon show all
Pages 4214-4233 | Received 18 Mar 2023, Accepted 23 May 2023, Published online: 01 Jun 2023

References

  • Abdelgalil, A. A., Alkahtani, H. M., & Al-Jenoobi, F. I. (2019). Sorafenib. Profiles of Drug Substances, Excipients, and Related Methodology, 44, 239–266.
  • Aborehab, N. M., Elnagar, M. R., & Waly, N. E. (2021). Gallic acid potentiates the apoptotic effect of paclitaxel and carboplatin via overexpression of Bax and P53 on the MCF‐7 human breast cancer cell line. Journal of Biochemical and Molecular Toxicology, 35(2), e22638. https://doi.org/10.1002/jbt.22638
  • Abou-Zied, H. A., Youssif, B. G., Mohamed, M. F., Hayallah, A. M., & Abdel-Aziz, M. (2019). EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorganic Chemistry, 89, 102997. https://doi.org/10.1016/j.bioorg.2019.102997
  • Alanazi, M. M., Eissa, I. H., Alsaif, N. A., Obaidullah, A. J., Alanazi, W. A., Alasmari, A. F., Albassam, H., Elkady, H., & Elwan, A. (2021a). Design, synthesis, docking, ADMET studies, and anticancer evaluation of new 3-methylquinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers. Journal of Enzyme Inhibition and Medicinal Chemistry, 36(1), 1760–1782. https://doi.org/10.1080/14756366.2021.1956488
  • Alanazi, M. M., Mahdy, H. A., Alsaif, N. A., Obaidullah, A. J., Alkahtani, H. M., Al-Mehizia, A. A., Alsubaie, S. M., Dahab, M. A., & Eissa, I. H. (2021b). New bis ([1, 2, 4] triazolo)[4, 3-a: 3′, 4′-c] quinoxaline derivatives as VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, in silico studies, and anticancer evaluation. Bioorganic Chemistry, 112, 104949. https://doi.org/10.1016/j.bioorg.2021.104949
  • Alanazi, M. M., Elkady, H., Alsaif, N. A., Obaidullah, A. J., Alkahtani, H. M., Alanazi, M. M., Alharbi, M. A., Eissa, I. H., & Dahab, M. A. (2021c). New quinoxaline-based VEGFR-2 inhibitors: Design, synthesis, and antiproliferative evaluation with in silico docking, ADMET, toxicity, and DFT studies. RSC Advances, 11(48), 30315–30328. https://doi.org/10.1039/d1ra05925d
  • Al-Husein, B. A., Mhaidat, N. M., Alzoubi, K. H., Alzoubi, G. M., Alqudah, M. A., Albsoul-Younes, A. M., & Matalqah, S. M. (2022). Pentoxifylline induces caspase-dependent apoptosis in colorectal cancer cells. Informatics in Medicine Unlocked, 31, 100997. https://doi.org/10.1016/j.imu.2022.100997
  • Al-Rashood, S. T., Hamed, A. R., Hassan, G. S., Alkahtani, H. M., Almehizia, A. A., Alharbi, A., Al-Sanea, M. M., & Eldehna, W. M. (2020). Antitumor properties of certain spirooxindoles towards hepatocellular carcinoma endowed with antioxidant activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 831–839. https://doi.org/10.1080/14756366.2020.1743281
  • Alsaif, N. A., Dahab, M. A., Alanazi, M. M., Obaidullah, A. J., Al-Mehizia, A. A., Alanazi, M. M., Aldawas, S., Mahdy, H. A., & Elkady, H. (2021). New quinoxaline derivatives as VEGFR-2 inhibitors with anticancer and apoptotic activity: Design, molecular modeling, and synthesis. Bioorganic Chemistry, 110, 104807. https://doi.org/10.1016/j.bioorg.2021.104807
  • Al-Salama, Z. T., Syed, Y. Y., & Scott, L. J. (2019). Lenvatinib: A review in hepatocellular carcinoma. Drugs, 79(6), 665–674. https://doi.org/10.1007/s40265-019-01116-x
  • Balah, A., Ezzat, O., & Akool, E.-S. (2018). Vitamin E inhibits cyclosporin A-induced CTGF and TIMP-1 expression by repressing ROS-mediated activation of TGF-β/Smad signaling pathway in rat liver. International Immunopharmacology, 65, 493–502. https://doi.org/10.1016/j.intimp.2018.09.033
  • Bellesoeur, A., Carton, E., Alexandre, J., Goldwasser, F., & Huillard, O. (2017). Axitinib in the treatment of renal cell carcinoma: Design, development, and place in therapy. Drug Design, Development and Therapy, 11, 2801–2811. https://doi.org/10.2147/DDDT.S109640
  • Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424.
  • Cadona, F. C., Dantas, R. F., de Mello, G. H., & Silva, F. P. Jr, (2022). Natural products targeting into cancer hallmarks: An update on caffeine, theobromine, and (+)-catechin. Critical Reviews in Food Science and Nutrition, 62(26), 7222–7241. https://doi.org/10.1080/10408398.2021.1913091
  • Callagy, G. M., Webber, M. J., Pharoah, P. D., & Caldas, C. (2008). Meta-analysis confirms BCL2 is an independent prognostic marker in breast cancer. BMC Cancer, 8(1), 153. https://doi.org/10.1186/1471-2407-8-153
  • Chabner, B. A., & Roberts, T. G. Jr, (2005). Chemotherapy and the war on cancer. Nature Reviews. Cancer, 5(1), 65–72. https://doi.org/10.1038/nrc1529
  • Chu, J. S., Ge, F. J., Zhang, B., Wang, Y., Silvestris, N., Liu, L. J., Zhao, C. H., Lin, L., Brunetti, A. E., Fu, Y. L., Wang, J., Paradiso, A., & Xu, J. M. (2013). Expression and prognostic value of VEGFR-2, PDGFR-β, and c-Met in advanced hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research, 32(1), 1–8. https://doi.org/10.1186/1756-9966-32-16
  • Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival: Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–277. https://doi.org/10.1016/0022-1759(86)90368-6
  • DeVita, V. T., Jr., & Chu, E. (2008). A history of cancer chemotherapy. Cancer Research, 68(21), 8643–8653. https://doi.org/10.1158/0008-5472.CAN-07-6611
  • Eissa, I. H., Yousef, R. G., Elkady, H., Alsfouk, A. A., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Elkaeed, E. B., & Metwaly, A. M. (2023). A new anticancer semisynthetic theobromine derivative targeting EGFR protein: CADDD study. Life, 13(1), 191. https://doi.org/10.3390/life13010191
  • El-Adl, K., Sakr, H. M., Yousef, R. G., Mehany, A. B., Metwaly, A. M., Elhendawy, M. A., Radwan, M. M., ElSohly, M. A., Abulkhair, H. S., & Eissa, I. H. (2021). Discovery of new quinoxaline-2 (1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorganic Chemistry, 114, 105105. https://doi.org/10.1016/j.bioorg.2021.105105
  • Eldehna, W. M., Hassan, G. S., Al-Rashood, S. T., Al-Warhi, T., Altyar, A. E., Alkahtani, H. M., Almehizia, A. A., & Abdel-Aziz, H. A. (2019). Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 322–332. https://doi.org/10.1080/14756366.2018.1547286
  • Elkady, H., Elwan, A., El-Mahdy, H. A., Doghish, A. S., Ismail, A., Taghour, M. S., Elkaeed, E. B., Eissa, I. H., Dahab, M. A., Mahdy, H. A., & Khalifa, M. M. (2022). New benzoxazole derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, anti-proliferative evaluation, flowcytometric analysis, and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 403–416. https://doi.org/10.1080/14756366.2021.2015343
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Alsfouk, A. A., Husein, D. Z., Ibrahim, I. M., Alswah, M., Elzahabi, H. S., Metwaly, A. M., & Eissa, I. H. (2022a). A new theobromine-based EGFRWT and EGFRT790M inhibitor and apoptosis inducer: Design, semi-synthesis, docking, DFT, MD simulations, and in vitro studies. Processes, 10(11), 2290. https://doi.org/10.3390/pr10112290
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Mehany, A. B., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022b). In silico, in vitro VEGFR-2 inhibition, and anticancer activity of a 3-(hydrazonomethyl) naphthalene-2-ol derivative. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2127907
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M., Alsfouk, B. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022c). Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects. Molecules, 27(14), 4606. https://doi.org/10.3390/molecules27144606
  • Elkaeed, E. B., Yousef, R. G., Elkady, H., Gobaara, I. M., Alsfouk, A. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022d). The assessment of anticancer and VEGFR-2 inhibitory activities of a new 1 H-indole derivative: In silico and in vitro approaches. Processes, 10(7), 1391. https://doi.org/10.3390/pr10071391
  • Elkaeed, E. B., Youssef, F. S., Eissa, I. H., Elkady, H., Alsfouk, A. A., Ashour, M. L., El Hassab, M. A., Abou-Seri, S. M., & Metwaly, A. M. (2022e). Multi-step in silico discovery of natural drugs against COVID-19 targeting main protease. International Journal of Molecular Sciences, 23(13), 6912. https://doi.org/10.3390/ijms23136912
  • Elkaeed, E. B., Taghour, M. S., Mahdy, H. A., Eldehna, W. M., El-Deeb, N. M., Kenawy, A. M., A Alsfouk, B., Dahab, M. A., Metwaly, A. M., Eissa, I. H., & El-Zahabi, M. A. (2022f). New quinoline and isatin derivatives as apoptotic VEGFR-2 inhibitors: Design, synthesis, anti-proliferative activity, docking, ADMET, toxicity, and MD simulation studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2191–2205. https://doi.org/10.1080/14756366.2022.2110869
  • Elnagar, M. R., Walls, A. B., Helal, G. K., Hamada, F. M., Thomsen, M. S., & Jensen, A. A. (2018). Functional characterization of α7 nicotinic acetylcholine and NMDA receptor signaling in SH-SY5Y neuroblastoma cells in an ERK phosphorylation assay. European Journal of Pharmacology, 826, 106–113. https://doi.org/10.1016/j.ejphar.2018.02.047
  • Elrazaz, E. Z., Serya, R. A., Ismail, N. S., Albohy, A., Abou El Ella, D. A., & Abouzid, K. A. (2021). Discovery of potent thieno [2, 3-d] pyrimidine VEGFR-2 inhibitors: Design, synthesis and enzyme inhibitory evaluation supported by molecular dynamics simulations. Bioorganic Chemistry, 113, 105019. https://doi.org/10.1016/j.bioorg.2021.105019
  • Elwan, A., Abdallah, A. E., Mahdy, H. A., Dahab, M. A., Taghour, M. S., Elkaeed, E. B., Mehany, A. B. M., Nabeeh, A., Adel, M., Alsfouk, A. A., Elkady, H., & Eissa, I. H. (2022). Modified benzoxazole-based VEGFR-2 inhibitors and apoptosis inducers: Design, synthesis, and anti-proliferative evaluation. Molecules, 27(15), 5047. https://doi.org/10.3390/molecules27155047
  • Farghaly, T. A., Al-Hasani, W. A., & Abdulwahab, H. G. (2021). An updated patent review of VEGFR-2 inhibitors (2017-present). Expert Opinion on Therapeutic Patents, 31(11), 989–1007. https://doi.org/10.1080/13543776.2021.1935872
  • Ferreira, L. L., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today. 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Fidler, I. J., & Ellis, L. M. (2000). Chemotherapeutic drugs—more really is not better. Nature Medicine, 6(5), 500–502. https://doi.org/10.1038/74969
  • Goel, P. N., & Gude, R. (2011). Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Molecular and Cellular Biochemistry, 358(1–2), 141–151. https://doi.org/10.1007/s11010-011-0929-8
  • Guo, P., Fang, Q., Tao, H.-Q., Schafer, C. A., Fenton, B. M., Ding, I., Hu, B., & Cheng, S.-Y. (2003). Overexpression of vascular endothelial growth factor by MCF-7 breast cancer cells promotes estrogen-independent tumor growth in vivo. Cancer Research, 63(15), 4684–4691.
  • Hagras, M., Saleh, M. A., Ezz Eldin, R. R., Abuelkhir, A. A., Khidr, E. G., El-Husseiny, A. A., El-Mahdy, H. A., Elkaeed, E. B., & Eissa, I. H. (2022). 1, 3, 4-Oxadiazole-naphthalene hybrids as potential VEGFR-2 inhibitors: Design, synthesis, antiproliferative activity, apoptotic effect, and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 386–402. https://doi.org/10.1080/14756366.2021.2015342
  • Jang, K., Kim, M., Gilbert, C. A., Simpkins, F., Ince, T. A., & Slingerland, J. M. (2017). VEGFA activates an epigenetic pathway upregulating ovarian cancer‐initiating cells. EMBO Molecular Medicine, 9(3), 304–318. https://doi.org/10.15252/emmm.201606840
  • Kamran, M. Z., & Gude, R. P. (2012). Preclinical evaluation of the antimetastatic efficacy of Pentoxifylline on A375 human melanoma cell line. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 66(8), 617–626. https://doi.org/10.1016/j.biopha.2012.03.006
  • Lee, K., Jeong, K.-W., Lee, Y., Song, J. Y., Kim, M. S., Lee, G. S., & Kim, Y. (2010). Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors. European Journal of Medicinal Chemistry, 45(11), 5420–5427. https://doi.org/10.1016/j.ejmech.2010.09.002
  • Lian, L., Li, X.-L., Xu, M.-D., Li, X.-M., Wu, M.-Y., Zhang, Y., Tao, M., Li, W., Shen, X.-M., Zhou, C., & Jiang, M. (2019). VEGFR2 promotes tumorigenesis and metastasis in a pro-angiogenic-independent way in gastric cancer. BMC Cancer, 19(1), 1–15. https://doi.org/10.1186/s12885-019-5322-0
  • Liu, K., Ren, T., Huang, Y., Sun, K., Bao, X., Wang, S., Zheng, B., & Guo, W. (2017). Apatinib promotes autophagy and apoptosis through VEGFR2/STAT3/BCL-2 signaling in osteosarcoma. Cell Death & Disease, 8(8), e3015-e3015. https://doi.org/10.1038/cddis.2017.422
  • Lo, K. K.-W., Lee, T. K.-M., Lau, J. S.-Y., Poon, W.-L., & Cheng, S.-H. (2008). Luminescent biological probes derived from ruthenium (II) estradiol polypyridine complexes. Inorganic Chemistry, 47(1), 200–208. https://doi.org/10.1021/ic701735q
  • Lu-Emerson, C., Duda, D. G., Emblem, K. E., Taylor, J. W., Gerstner, E. R., Loeffler, J. S., Batchelor, T. T., & Jain, R. K. (2015). Lessons from anti–vascular endothelial growth factor and anti–vascular endothelial growth factor receptor trials in patients with glioblastoma. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 33(10), 1197–1213. https://doi.org/10.1200/JCO.2014.55.9575
  • Mahfouz, N., Tahtouh, R., Alaaeddine, N., El Hajj, J., Sarkis, R., Hachem, R., Raad, I., & Hilal, G. (2017). Gastrointestinal cancer cells treatment with bevacizumab activates a VEGF autoregulatory mechanism involving telomerase catalytic subunit hTERT via PI3K-AKT, HIF-1α and VEGF receptors. PLoS One, 12(6), e0179202. https://doi.org/10.1371/journal.pone.0179202
  • McDonnell, T. J., & Korsmeyer, S. J. (1991). Progression from lymphoid hyperplasia to high-grade malignant lymphoma in mice transgenic for the t (14; 18). Nature, 349(6306), 254–256. https://doi.org/10.1038/349254a0
  • Metwaly, A. M., Ghoneim, M. M., Eissa, I. H., Elsehemy, I. A., Mostafa, A. E., Hegazy, M. M., Afifi, W. M., & Dou, D. (2021). Traditional ancient Egyptian medicine: A review. Saudi Journal of Biological Sciences, 28(10), 5823–5832. https://doi.org/10.1016/j.sjbs.2021.06.044
  • Metwaly, A. M., Lianlian, Z., Luqi, H., & Deqiang, D. (2019). Black ginseng and its saponins: Preparation, phytochemistry and pharmacological effects. Molecules, 24(10), 1856. https://doi.org/10.3390/molecules24101856
  • Mohamed, H. A., Lake, B. R., Laing, T., Phillips, R. M., & Willans, C. E. (2015). Synthesis and anticancer activity of silver (I)–N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Transactions (Cambridge, England : 2003), 44(16), 7563–7569. https://doi.org/10.1039/c4dt03679d
  • Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4
  • Peng, L., & Schwarz, R. E. (2013). Pancreatic neuroendocrine tumors: Signal pathways and targeted therapies. Current Molecular Medicine, 13(3), 333–339. https://doi.org/10.2174/1566524011313030002
  • Pengcheng, S., Ziqi, W., Luyao, Y., Xiangwei, Z., Liang, L., Yuwei, L., Lechen, L., & Wanhai, X. (2017). MicroRNA-497 suppresses renal cell carcinoma by targeting VEGFR-2 in ACHN cells. Bioscience Reports, 37(3), 1–10. https://doi.org/10.1042/BSR20170270
  • Pietenpol, J., & Stewart, Z. (2002). Cell cycle checkpoint signaling:: Cell cycle arrest versus apoptosis. Toxicology, 181–182, 475–481. https://doi.org/10.1016/S0300-483X(02)00460-2
  • Riquelme, E., Suraokar, M., Behrens, C., Lin, H. Y., Girard, L., Nilsson, M. B., Simon, G., Wang, J., Coombes, K. R., Lee, J. J., Hong, W. K., Heymach, J., Minna, J. D., & Wistuba, I. I. (2014). VEGF/VEGFR-2 upregulates EZH2 expression in lung adenocarcinoma cells and EZH2 depletion enhances the response to platinum-based and VEGFR-2–targeted TherapyVEGF/VEGFR-2 induces EZH2 expression in lung adenocarcinoma. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 20(14), 3849–3861. https://doi.org/10.1158/1078-0432.CCR-13-1916
  • Sabt, A., Abdelhafez, O. M., El-Haggar, R. S., Madkour, H. M., Eldehna, W. M., El-Khrisy, E. E.-D. A., Abdel-Rahman, M. A., & Rashed, L. A. (2018). Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 1095–1107. https://doi.org/10.1080/14756366.2018.1477137
  • Shah, A. A., Kamal, M. A., & Akhtar, S. (2021). Tumor angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions. Current Drug Metabolism, 22(1), 50–59. https://doi.org/10.2174/1389200221666201019143252
  • Simons, M., Gordon, E., & Claesson-Welsh, L. (2016). Mechanisms and regulation of endothelial VEGF receptor signalling. Nature Reviews. Molecular Cell Biology, 17(10), 611–625. https://doi.org/10.1038/nrm.2016.87
  • Taghour, M. S., Elkady, H., Eldehna, W. M., El-Deeb, N. M., Kenawy, A. M., Elkaeed, E. B., Alsfouk, A. A., Alesawy, M. S., Metwaly, A. M., & Eissa, I. H. (2022a). Design and synthesis of thiazolidine-2, 4-diones hybrids with 1, 2-dihydroquinolones and 2-oxindoles as potential VEGFR-2 inhibitors: In-vitro anticancer evaluation and in-silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1903–1917. https://doi.org/10.1080/14756366.2022.2085693
  • Taghour, M. S., Elkady, H., Eldehna, W. M., El-Deeb, N., Kenawy, A. M., Elkaeed, E. B., Alsfouk, B. A., Alesawy, M. S., Husein, D. Z., Metwaly, A. M., & Eissa, I. H. (2022b). Design, synthesis, anti-proliferative evaluation, docking, and MD simulations studies of new thiazolidine-2, 4-diones targeting VEGFR-2 and apoptosis pathway. PLoS One, 17(9), e0272362. https://doi.org/10.1371/journal.pone.0272362
  • Taghour, M. S., Elkady, H., Eldehna, W. M., El-Deeb, N., Kenawy, A. M., Abd El-Wahab, A. E., Elkaeed, E. B., Alsfouk, B. A., Metwaly, A. M., & Eissa, I. H. (2023). Discovery of new quinoline and isatine derivatives as potential VEGFR-2 inhibitors: Design, synthesis, antiproliferative, docking and MD simulation studies. Journal of Biomolecular Structure and Dynamics, 1–16. https://doi.org/10.1080/07391102.2022.2164356
  • Wang, J., & Lenardo, M. J. (2000). Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. Journal of Cell Science, 113(5), 753–757. https://doi.org/10.1242/jcs.113.5.753
  • Wang, Z., Wang, N., Han, S., Wang, D., Mo, S., Yu, L., Huang, H., Tsui, K., Shen, J., & Chen, J. (2013). Dietary compound isoliquiritigenin inhibits breast cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PloS One, 8(7), e68566. https://doi.org/10.1371/journal.pone.0068566
  • Ward, R. A., Fawell, S., Floc’h, N., Flemington, V., McKerrecher, D., & Smith, P. D. (2021). Challenges and opportunities in cancer drug resistance. Chemical Reviews, 121(6), 3297–3351. https://doi.org/10.1021/acs.chemrev.0c00383
  • WHO. (2023). Cancer overview. https://www.who.int/health-topics/cancer#tab=tab_1
  • Yousef, R. G., Elkady, H., Elkaeed, E. B., Gobaara, I. M., Al-Ghulikah, H. A., Husein, D. Z., Ibrahim, I. M., Metwaly, A. M., & Eissa, I. H. (2022a). (E)-N-(3-(1-(2-(4-(2, 2, 2-Trifluoroacetamido) benzoyl) hydrazono) ethyl) phenyl) nicotinamide: A novel pyridine derivative for inhibiting vascular endothelial growth factor receptor-2: Synthesis, computational, and anticancer studies. Molecules, 27(22), 7719. https://doi.org/10.3390/molecules27227719
  • Yousef, R. G., Elwan, A., Gobaara, I. M., Mehany, A. B., Eldehna, W. M., El-Metwally, S. A., Alsfouk, B. A., Elkaeed, E. B., Metwaly, A. M., & Eissa, I. H. (2022b). Anti-cancer and immunomodulatory evaluation of new nicotinamide derivatives as potential VEGFR-2 inhibitors and apoptosis inducers: In vitro and in silico studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2206–2222. https://doi.org/10.1080/14756366.2022.2110868
  • Yousef, R. G., Ibrahim, A., Khalifa, M. M., Eldehna, W. M., Gobaara, I. M., Mehany, A. B., Elkaeed, E. B., Alsfouk, A. A., Metwaly, A. M., & Eissa, I. H. (2022c). Discovery of new nicotinamides as apoptotic VEGFR-2 inhibitors: Virtual screening, synthesis, anti-proliferative, immunomodulatory, ADMET, toxicity, and molecular dynamic simulation studies. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 1389–1403. https://doi.org/10.1080/14756366.2022.2070744
  • Zhang, S., Gao, X., Fu, W., Li, S., & Yue, L. (2017). Immunoglobulin-like domain 4-mediated ligand-independent dimerization triggers VEGFR-2 activation in HUVECs and VEGFR2-positive breast cancer cells. Breast Cancer Research and Treatment, 163(3), 423–434. https://doi.org/10.1007/s10549-017-4189-5
  • Zhong, Z., Huang, M., Lv, M., He, Y., Duan, C., Zhang, L., & Chen, J. (2017). Circular RNA MYLK as a competing endogenous RNA promotes bladder cancer progression through modulating VEGFA/VEGFR2 signaling pathway. Cancer Letters, 403, 305–317. https://doi.org/10.1016/j.canlet.2017.06.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.