114
Views
1
CrossRef citations to date
0
Altmetric
Research Article

‘Computational studies on coumestrol-ArlR interaction to target ArlRS signaling cascade involved in MRSA virulence’

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 3712-3730 | Received 19 Sep 2022, Accepted 10 May 2023, Published online: 09 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Anand, U., Jacobo-Herrera, N., Altemimi, A., & Lakhssassi, N. (2019). A comprehensive review on medicinal plants as antimicrobial therapeutics: Potential avenues of biocompatible drug discovery. Metabolites, 9(11), 258. https://doi.org/10.3390/metabo9110258
  • Arip, M., Selvaraja, M., R, M., Tan, L. F., Leong, M. Y., Tan, P. L., Yap, V. L., Chinnapan, S., Tat, N. C., Abdullah, M., K, D., & Jubair, N. (2022). Review on plant-based management in combating antimicrobial resistance-mechanistic perspective. Frontiers in Pharmacology, 13, 879495. https://doi.org/10.3389/fphar.2022.879495
  • Basu, P. (2010). Chapter 5 – gasification theory and modeling of gasifiers. In P. Basu (Ed.), Biomass Gasification and Pyrolysis. Academic Press.
  • Bera, K., Ghosh, B., & Mukhopadhyay, M. (2022). Functional principal of nanotechnology in clinical research. In Nanomaterials in clinical therapeutics: Synthesis and applications (pp. 33–73). Wiley Online library. https://doi.org/10.1002/9781119857747.ch2
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, IN., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bodner, C. C., & Hymowitz, T. (2002). Ethnobotany of Pueraria species, Pueraria (pp. 50–86). CRC Press.
  • Bourret, R. B. (2010). Receiver domain structure and function in response regulator proteins. Current Opinion in Microbiology, 13(2), 142–149. https://doi.org/10.1016/j.mib.2010.01.015
  • Burgui, S., Gil, C., Solano, C., Lasa, I., & Valle, J. (2018). A systematic evaluation of the two-component systems network reveals that ArlRS is a key regulator of catheter colonization by Staphylococcus aureus. Frontiers in Microbiology, 9, 342. https://doi.org/10.3389/fmicb.2018.00342
  • Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., Christie, C. H., Dalenberg, K., Di Costanzo, L., Duarte, J. M., Dutta, S., Feng, Z., Ganesan, S., Goodsell, D. S., Ghosh, S., Green, R. K., Guranović, V., Guzenko, D., Hudson, B. P., … Zhuravleva, M. (2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Research, 49(D1), D437–D451. https://doi.org/10.1093/nar/gkaa1038
  • Cao, Y., & Li, L. (2014). Improved protein–ligand binding affinity prediction by using a curvature-dependent surface-area model. Bioinformatics (Oxford, England), 30(12), 1674–1680. https://doi.org/10.1093/bioinformatics/btu104
  • Capra, E. J., & Laub, M. T. (2012). The evolution of two-component signal transduction systems. Annual Review of Microbiology, 66, 325–347. https://doi.org/10.1146/annurev-micro-092611-150039
  • Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P. W., & Tang, Y. (2012). A comprehensive source and free tool for assessment of chemical ADMET properties. Journal of Chemical Information and Modeling, 52(11), 3099–3105. (). https://doi.org/10.1016/j.molstruc.2017.09.108
  • Cui, T., Tang, S., Liu, C., Li, Z., Zhu, Q., You, J., Si, X., Zhang, F., He, P., Liu, Z., Miao, M., Yang, G., Shen, Q., & Jiang, L. (2018). Three new isoflavones from the Pueraria montana var. lobata (Willd.) and their bioactivities. Natural Product Research, 32(23), 2817–2824. https://doi.org/10.1080/14786419.2017.1385008
  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Dassault Systemes BIOVIA. (2008). Discovery Studio, Accelrys [2.1]; Dassault Systemes BIOVIA: San Diego, CA, USA.
  • Deb, S., Reeves, A. A., Hopefl, R., & Bejusca, R. (2021). ADME and pharmacokinetic properties of remdesivir: Its drug interaction potential. Pharmaceuticals, 14(7), 655. https://doi.org/10.3390/ph14070655
  • DeLano, W. L. (2002). Pymol: An open-source molecular graphics tool. CCP4 Newsletter on. Protein Crystallography, 40, 82–92.
  • Dennington, R. (2016). GaussView Version 6. Semichem.
  • Duke, J. A. (1992). Handbook of phytochemical constituents of GRAS herbs and other economic plants. CRC Press. https://doi.org/10.1201/9780203752623
  • Fett, W. F., & Osman, S. F. (1982). Inhibition of bacteria by the soybean isoflavonoids glyceollin and coumestrol. Phytopathology, 72(7), 755–760. https://doi.org/10.1094/Phyto-72-755
  • Filimonov, D. A., Lagunin, A. A., Gloriozova, T. A., Rudik, A. V., Druzhilovskii, D. S., Pogodin, P. V., & Poroikov, V. V. (2014). Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chemistry of Heterocyclic Compounds, 50(3), 444–457. https://doi.org/10.1007/s10593-014-1496-1
  • Fourches, D., Muratov, E., & Tropsha, A. (2015). Curation of chemogenomics data. Nature Chemical Biology, 11(8), 535. https://doi.org/10.1038/nchembio.1881
  • Fournier, B., & Hooper, D. C. (2000). A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of staphylococcus aureus. Journal of Bacteriology, 182(14), 3955–3964. https://doi.org/10.1128/JB.182.14.3955-3964.2000
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian 09, Revision A.02. Gaussian.
  • Gaulton, A., Hersey, A., Nowotka, M., Bento, A. P., Chambers, J., Mendez, D., Mutowo, P., Atkinson, F., Bellis, L. J., Cibrián-Uhalte, E., Davies, M., Dedman, N., Karlsson, A., Magariños, M. P., Overington, J. P., Papadatos, G., Smit, I., & Leach, A. R. (2017). The ChEMBL database in 2017. Nucleic Acids Research, 45(D1), D945–D954. https://doi.org/10.1093/nar/gkw1074
  • Groisman, E. A. (2016). Feedback control of two-component regulatory systems. Annual Review of Microbiology, 70, 103–124. https://doi.org/10.1146/annurev-micro-102215-095331
  • Havsteen, B. H. (2002). The biochemistry and medical significance of the flavonoids. Pharmacology & Therapeutics, 96(2–3), 67–202. https://doi.org/10.1016/S0163-7258(02)00298-X
  • Heinig, M., & Frishman. (2004). ST RIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Research, 32(suppl_2), W500–W502. https://doi.org/10.1093/nar/gkh429
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12%3C1463::AID-JCC4%3E3.0.CO;2-H
  • Hoang, T. X., Trovato, A., Seno, F., Banavar, J. R., & Maritan, A. (2004). Geometry and symmetry presculpt the free-energy landscape of proteins. Proceedings of the National Academy of Sciences of the United States of America, 101(21), 7960–7964. https://doi.org/10.1073/pnas.0402525101
  • Hong, H., Landauer, M. R., Foriska, M. A., & Ledney, G. D. (2006). Antibacterial activity of the soy isoflavone genistein. Journal of Basic Microbiology, 46(4), 329–335. https://doi.org/10.1002/jobm.200510073
  • Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: Role and strength. ELS. https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Jencks, W. P. (1981). On the attribution and additivity of binding energies. Proceedings of the National Academy of Sciences of the United States of America, 78(7), 4046–4050. https://doi.org/10.1073/pnas.78.7.4046
  • Jensen, F. (2017). Introduction to computational chemistry. John Wiley & Sons.
  • Kalescky, R., Zhou, H., Liu, J., & Tao, P. (2016). Rigid residue scan simulations systematically reveal residue entropic roles in protein allostery. PLoS Computational Biology, 12(4), e1004893. https://doi.org/10.1371/journal.pcbi.1004893
  • Kinjo, J.-E. I., Takeshita, T., Abe, Y. O. K. O., Terada, N., Yamashita, H., Yamasaki, M., Takeuchi, K., Murakami, K., Tomimatsu, T., & Nohara, T. (1988). Studies on the constituents of Pueraria lobata. IV: Chemical constituents in the flowers and the leaves. Chemical and Pharmaceutical Bulletin, 36(3), 1174–1179. https://doi.org/10.1248/cpb.36.1174
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms. Physica, 1(1–6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Kopustinskiene, D. M., Bernatonyte, U., Maslii, Y., Herbina, N., & Bernatoniene, J. (2022). Natural herbal non-opioid topical pain relievers—comparison with traditional therapy. Pharmaceutics, 14(12), 2648. https://doi.org/10.3390/pharmaceutics14122648
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa–a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kurkcuoglu, Z., Koukos, P. I., Citro, N., Trellet, M. E., Rodrigues, J. P. G. L. M., Moreira, I. S., Roel-Touris, J., Melquiond, A. S. J., Geng, C., Schaarschmidt, J., Xue, L. C., Vangone, A., & Bonvin, A. M. J. J. (2018). Performance of HADDOCK and a simple contact-based proteinligand binding affinity predictor in the D3R grand challenge 2. Journal of Computer-Aided Molecular Design, 32(1), 175–185. https://doi.org/10.1007/s10822-017-0049-y
  • Kwiecinski, J. M., Jelani, D. A., Fuentes, E. J., & Horswill, A. R. (2022). Therapeutic inhibition of Staphylococcus aureus ArlRS two-component regulatory system blocks virulence. Antimicrobial Agents and Chemotherapy, 66(7), e00187-22. https://doi.org/10.1128/aac.00187-22
  • Lagunin, A., Stepanchikova, A., Filimonov, D., & Poroikov, V. (2000). PASS: Prediction of activity spectra for biologically active substances. Bioinformatics (Oxford, England), 16(8), 747–748. https://doi.org/10.1093/bioinformatics/16.8.747
  • Lalouckova, K., Mala, L., Marsik, P., & Skrivanova, E. (2021). In vitro antibacterial effect of the methanolic extract of the Korean soybean fermented product doenjang against Staphylococcus aureus. Animals, 11(8), 2319. https://doi.org/10.3390/ani11082
  • Lau, C. S. (2005). A glycoside flavonoid in kudzu (Pueraria lobata) identification, quantification, and determination of antioxidant activity. Applied Biochemistry and Biotechnology, 121, 783–794. https://doi.org/10.1007/978-1-59259-991-2_66
  • Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature Reviews. Disease Primers, 4, 18033. https://doi.org/10.1038/nrdp.2018.33
  • Lemkul, J. (2019). From proteins to perturbed Hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article V1. 0]. Living Journal of Computational Molecular Science, 1(1), 1–53. https://doi.org/10.33011/livecoms.1.1.5068
  • Liu, Y., Grimm, M., Dai, W.-T., Hou, M.-C., Xiao, Z.-X., & Cao, Y. (2020). CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica, 41(1), 138–144. https://doi.org/10.1038/s41401-019-0228-6
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Lu, J., Xie, Y., Tan, Y., Qu, J., Matsuda, H., Yoshikawa, M., & Yuan, D. (2013). Simultaneous Determination of isoflavones, saponins and flavones in Flos Puerariae by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. Chemical & Pharmaceutical Bulletin, 61(9), 941–951. https://doi.org/10.1248/cpb.c13-00271
  • Luong, T. T., & Lee, C. Y. (2006). The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA–dependent pathway. Microbiology (Reading, England), 152(Pt 10), 3123–3131. https://doi.org/10.1099/mic.0.29177-0
  • Malachowa, N., & DeLeo, F. R. (2010). Mobile genetic elements of Staphylococcus aureus. Cellular and Molecular Life Sciences: CMLS, 67(18), 3057–3071. https://doi.org/10.1007/s00018-010-0389-4
  • Martis, E. A. F., & Coutinho, E. C. (2019). Free energy-based methods to understand drug resistance mutations. In C. G. Mohan (Ed.), Structural bioinformatics: Applications in preclinical drug discovery process. Springer International Publishing.
  • Memmi, G., Nair, D. R., & Cheung, A. (2012). Role of ArlRS in autolysis in methicillin-sensitive and methicillin-resistant Staphylococcus aureus strains. Journal of Bacteriology, 194(4), 759–767. https://doi.org/10.1128/JB.06261-11
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, 24(1), 8.14.11–8.14.40. https://doi.org/10.1002/0471250953.bi0814s24
  • Novotny, J. (1991). Protein antigenicity: A thermodynamic approach. Molecular Immunology, 28(3), 201–207. https://doi.org/10.1016/0161-5890(91)90062-o
  • Ong, Z. X., Kannan, B., & Becker, D. L. (2023). Exploiting transposons in the study of Staphylococcus aureus pathogenesis and virulence. Critical Reviews in Microbiology, 49(3), 297–317. https://doi.org/10.1080/1040841X.2022.2052794
  • Ouyang, Z., Zheng, F., Chew, J. Y., Pei, Y., Zhou, J., Wen, K., Han, M., Lemieux, M. J., Hwang, P. M., & Wen, Y. (2019). Deciphering the activation and recognition mechanisms of Staphylococcus aureus response regulator ArlR. Nucleic Acids Research, 47(21), 11418–11429. https://doi.org/10.1093/nar/gkz891
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pendleton, J. N., Gorman, S. P., & Gilmore, B. F. (2013). Clinical relevance of the ESKAPE pathogens. Expert Review of anti-Infective Therapy, 11(3), 297–308. https://doi.org/10.1586/eri.13.12
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pogodin, P. V., Lagunin, A. A., Filimonov, D. A., & Poroikov, V. V. (2015). PASS targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach. SAR and QSAR in Environmental Research, 26(10), 783–793. https://doi.org/10.1080/1062936X.2015.1078407
  • Pogodin, P. V., Lagunin, A. A., Rudik, A. V., Filimonov, D. A., Druzhilovskiy, D. S., Nicklaus, M. C., & Poroikov, V. V. (2018). How to achieve better results using PASS-based virtual screening: Case study for kinase inhibitors. Frontiers in Chemistry, 6, 133. https://doi.org/10.3389/fchem.2018.00133
  • Sarker, S. D., & Nahar, L. (2020). Medicinal natural products: A disease-focused approach. Academic Press.
  • Schüttelkopf, A. W., & Van Aalten, D. M. (2004). PRODRG: A tool for high throughput crystallography of protein–ligand complexes. Acta Crystallographica. Section D, Biological Crystallography, 60(Pt 8), 1355–1363. https://doi.org/10.1107/S0907444904011679
  • Stock, A. M., Robinson, V. L., & Goudreau, P. N. (2000). Two-component signal transduction. Annual Review of Biochemistry, 69, 183–215. https://doi.org/10.1146/annurev.biochem.69.1.183
  • Sukhwal, A., & Sowdhamini, R. (2013). Oligomerisation status and evolutionary conservation of interfaces of protein structural domain superfamilies. Molecular BioSystems, 9(7), 1652–1661. https://doi.org/10.1039/C3MB25484D
  • Tang, J., Wang, Y., Zhou, H., Ye, Y., Talukdar, M., Fu, Z., Liu, Z., Li, J., Neculai, D., Gao, J., & Huang, H. (2020). Sunitinib inhibits RNase L by destabilizing its active dimer conformation. The Biochemical Journal, 477(17), 3387–3399. https://doi.org/10.1042/BCJ20200260
  • Taylor, T. A., & Unakal, C. G. (2022). Staphylococcus aureus. In StatPearls [Internet]. StatPearls Publishing.
  • Tong, S. Y. C., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661. https://doi.org/10.1128/CMR.00134-14
  • Tripoli, E., Guardia, M. L., Giammanco, S., Majo, D. D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry, 104(2), 466–479. https://doi.org/10.1016/j.foodchem.2006.11.054
  • Tungmunnithum, D., Intharuksa, A., & Sasaki, Y. (2020). A promising view of kudzu plant, Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep: Flavonoid phytochemical compounds, taxonomic data, traditional uses and potential biological activities for future cosmetic application. Cosmetics, 7(1), 12. https://doi.org/10.3390/cosmetics7010012
  • Vangone, A., & Bonvin, A. M. J. J. (2015). Contact-based prediction of binding affinity in protein-protein complexes. eLife, 4, e07454. https://doi.org/10.7554/eLife.07454
  • Vangone, A., Schaarschmidt, J., Koukos, P., Geng, C., Citro, N., Trellet, M. E., Xue, L. C., & Bonvin, A. M. J. J. (2019). Large-scale prediction of binding affinity in protein-small ligand complexes: The PRODIGY-LIG web server. Bioinformatics (Oxford, England), 35(9), 1585–1587. https://doi.org/10.1093/bioinformatics/bty816
  • Vaou, N., Stavropoulou, E., Voidarou, C., Tsigalou, C., & Bezirtzoglou, E. (2021). Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms, 9(10), 2041. https://doi.org/10.3390/microorganisms9102041
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623., https://doi.org/10.1021/jm020017n
  • Verma, A. K., Ahmed, S. F., Hossain, M., Bhojiya, A. A., Upadhyay, S. K., Srivastava, A. K., Singh, N., Harina, H., Rahaman, M. M., & Bahadur, N. M. (2022). Unlocking SGK1 inhibitor potential of bis-[1-N, 7-N, pyrazolo tetraethoxyphthalimido {-4-(3, 5-Dimethyl-4-(spiro-3-methylpyazolo)-1, 7-dihydro-1H-dipyrazolo [3, 4-b; 4', 3'-e] pyridin-8-yl)}] p-disubstituted phenyl compounds: A computational study. Journal of Biomolecular Structure and Dynamics, 40(24), 13412–13431. https://doi.org/10.1080/07391102.2021.1988711
  • Walker, J. N., Crosby, H. A., Spaulding, A. R., Salgado-Pabón, W., Malone, C. L., Rosenthal, C. B., Schlievert, P. M., Boyd, J. M., & Horswill, A. R. (2013). The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis. PLoS Pathogens, 9(12), e1003819. https://doi.org/10.1371/journal.ppat.1003819
  • Wen, Y., Ouyang, Z., Devreese, B., He, W., Shao, Y., Lu, W., & Zheng, F. (2017). Crystal structure of master biofilm regulator CsgD regulatory domain reveals an atypical receiver domain. Protein Science: A Publication of the Protein Society, 26(10), 2073–2082. https://onlinelibrary.wiley.com/journal/1469896x https://doi.org/10.1002/pro.3245
  • Wen, Y., Ouyang, Z., Yu, Y., Zhou, X., Pei, Y., Devreese, B., Higgins, P. G., & Zheng, F. (2017). Mechanistic insight into how multidrug resistant Acinetobacter baumannii response regulator AdeR recognizes an intercistronic region. Nucleic Acids Research, 45(16), 9773–9787. https://doi.org/10.1093/nar/gkx624
  • Wertheim, H. F. L., Melles, D. C., Vos, M. C., van Leeuwen, W., van Belkum, A., Verbrugh, H. A., & Nouwen, J. L. (2005). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751–762. https://doi.org/10.1016/S1473-3099(05)70295-4
  • Wu, Z. (2010). Flora of China Vol. 10 (Fabaceae). Science Press and Missouri Botanical Garden Press.
  • Xie, M., & Schowen, R. L. (1999). Secondary structure and protein deamidation. Journal of Pharmaceutical Sciences, 88(1), 8–13. https://doi.org/10.1021/js9802493
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web-server for predicting the binding affinity in protein-protein complexes. Bioinformatics, 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yildiz, S. C. (2022). Staphylococcus aureus and methicillin resistant Staphylococcus aureus (MRSA) carriage and infections. In Staphylococcal infections-recent advances and perspectives. IntechOpen. https://doi.org/10.5772/intechopen.107138
  • Zídek, L., Novotny, M. V., & Stone, M. J. (1999). Increased protein backbone conformational entropy upon hydrophobic ligand binding. Nature Structural Biology, 6(12), 1118–1121. https://doi.org/10.1038/70057
  • Zhang, G., Liu, J., Gao, M., Kong, W., Zhao, Q., Shi, L., & Wang, Q. (2020). Tracing the edible and medicinal plant Pueraria montana and Its products in the marketplace yields subspecies level distinction using DNA barcoding and DNA metabarcoding. Frontiers in Pharmacology, 11, 336. https://doi.org/10.3389/fphar.2020.00336
  • Zhou, Y.-X., Zhang, H., & Peng, C. (2014). Puerarin: A review of pharmacological effects. Phytotherapy Research: PTR, 28(7), 961–975. https://doi.org/10.1002/ptr.5083

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.