193
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, biological evaluation and molecular modeling studies of modulated benzyloxychalcones as potential acetylcholinesterase inhibitors

, , ORCID Icon, ORCID Icon, , , , & show all
Pages 3604-3615 | Received 16 Jan 2023, Accepted 09 May 2023, Published online: 09 Jun 2023

References

  • Abdelgawad, M. A., Oh, J. M., Parambi, D. G. T., Kumar, S., Musa, A., Ghoneim, M. M., Nayl, A. A., El-Ghorab, A. H., Ahmad, I., Patel, H., Kim, H., & Mathew, B. (2022). Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson’s disease. Journal of Molecular Structure, 1266, 133545. https://doi.org/10.1016/j.molstruc.2022.133545
  • Acar Çevik, U., Celik, I., Işık, A., Ahmad, I., Patel, H., Özkay, Y., & Kaplancıklı, Z. A. (2023). Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. Journal of Biomolecular Structure and Dynamics, 41(5), 1944–1958. https://doi.org/10.1080/07391102.2022.2025906
  • Ahmad, I., Pawara, R. H., Girase, R. T., Pathan, A. Y., Jagatap, V. R., Desai, N., Ayipo, Y. O., Surana, S. J., & Patel, H. (2022). Synthesis, molecular modeling study, and quantum-chemical-based investigations of isoindoline-1,3-diones as antimycobacterial agents. ACS Omega, 7(25), 21820–21844. https://doi.org/10.1021/acsomega.2c01981
  • Aksöz, B. E., & Ertan, R. (2012). Spectral properties of chalcones II. FABAD Journal of Pharmaceutical Sciences, 37(4), 205–216.
  • Alcaro, S., Arcone, R., Costa, G., De Vita, D., Iannone, M., Ortuso, F., Procopio, A., Pasceri, R., Rotiroti, D., & Scipione, L. (2010). Simple choline esters as potential anti-Alzheimer agents. Current Pharmaceutical Design, 16(6), 692–697. https://doi.org/10.2174/138161210790883796
  • Al-Ghulikah, H. A., Mughal, E. U., Elkaeed, E. B., Naeem, N., Nazir, Y., Alzahrani, A. Y. A., Sadiq, A., & Shah, S. W. A. (2023). Discovery of chalcone derivatives as potential α-glucosidase and cholinesterase inhibitors: Effect of hyperglycemia in paving a path to dementia. Journal of Molecular Structure, 1275, 134658. https://doi.org/10.1016/j.molstruc.2022.134658
  • Aliabadi, A., Mohammadi-Farani, A., Ahmadvand, M. J., & Rahmani-Khajouei, M. (2017). Synthesis, docking and acetylcholinesterase inhibitory evaluation of (E)-3-(4-(diethylamino) phenyl)-1-phenylprop-2-en-1-one derivatives with probable anti-Alzheimer effects. Journal of Reports in Pharmaceutical Sciences, 6(2), 134.
  • Aljuhani, A., Ahmed, H. E. A., Ihmaid, S. K., Omar, A. M., Althagfan, S. S., Alahmadi, Y. M., Ahmad, I., Patel, H., Ahmed, S., Almikhlafi, M. A., El-Agrody, A. M., Zayed, M. F., Turkistani, S. A., Abulkhair, S. H., Almaghrabi, M., Salama, S. A., Al-Karmalawy, A. A., & Abulkhair, H. S. (2022). In vitro and computational investigations of novel synthetic carboxamide-linked pyridopyrrolopyrimidines with potent activity as SARS-CoV-2-MPro inhibitors. RSC Advances, 12(41), 26895–26907. https://doi.org/10.1039/D2RA04015H
  • Anto, R. J., Sukumaran, K., Kuttan, G., Rao, M., Subbaraju, V., & Kuttan, R. (1995). Anticancer and antioxidant activity of synthetic chalcones and related compounds. Cancer Letters, 97(1), 33–37. https://doi.org/10.1016/0304-3835(95)03945-s
  • Ballard, C., Gauthier, S., Corbett, A., Brayne, C., Aarsland, D., & Jones, E. (2011). Alzheimer’s disease. Lancet (London, England), 377(9770), 1019–1031. https://doi.org/10.1016/S0140-6736(10)61349-9
  • Ballesteros, J., Sanz, M., Ubeda, A., Miranda, M., Iborra, S., Paya, M., & Alcaraz, M. (1995). Synthesis and pharmacological evaluation of 2'-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. Journal of Medicinal Chemistry, 38(14), 2794–2797. https://doi.org/10.1021/jm00014a032
  • Chang, T.-N., Deng, J.-S., Chang, Y.-C., Lee, C.-Y., Jung-Chun, L., Lee, M.-M., Peng, W. H., Huang, S.-S., & Huang, G.-J. (2012). Ameliorative effects of scopoletin from Crossostephium chinensis against inflammation pain and its mechanisms in mice. Evidence-Based Complementary and Alternative Medicine : eCAM, 2012, 595603. https://doi.org/10.1155/2012/595603
  • Chaudhari, B., Patel, H., Thakar, S., Ahmad, I., & Bansode, D. (2022). Optimizing the Sunitinib for cardio-toxicity and thyro-toxicity by scaffold hopping approach. In Silico Pharmacology, 10(1), 10. https://doi.org/10.1007/s40203-022-00125-1
  • Chen, M., Zhai, L., Christensen, S. B., Theander, T. G., & Kharazmi, A. (2001). Inhibition of fumarate reductase in Leishmania major and L. donovani by chalcones. Antimicrobial Agents and Chemotherapy, 45(7), 2023–2029. https://doi.org/10.1128/AAC.45.7.2023-2029.2001
  • Cheung, J., Rudolph, M. J., Burshteyn, F., Cassidy, M. S., Gary, E. N., Love, J., Franklin, M. C., & Height, J. J. (2012). Structures of human acetylcholinesterase in complex with pharmacologically important ligands. Journal of Medicinal Chemistry, 55(22), 10282–10286. https://doi.org/10.1021/jm300871x
  • Desai, N. C., Joshi, S. B., Khasiya, A. G., Jadeja, D. J., Mehta, H. K., Pandya, M., Ahmad, I., & Patel, H. (2022). Pyrazolo-imidazolidinones: Synthesis, antimicrobial assessment and molecular modelling studies by molecular mechanic and quantum mechanic approach. Journal of Molecular Structure, 1270, 134000. https://doi.org/10.1016/j.molstruc.2022.134000
  • Desmond (2021) The Schrödinger Desmond MD simulation programme in Maestro-Desmond interoperability tools. Schrödinger.
  • Domínguez, J. N., León, C., Rodrigues, J., de Domínguez, N. G., Gut, J., & Rosenthal, P. J. (2005). Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Farmaco (Societa Chimica Italiana : 1989), 60(4), 307–311. https://doi.org/10.1016/j.farmac.2005.01.005
  • Ellman, G. L., Courtney, K. D., Andres, V., & Feather-Stone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. https://doi.org/10.1016/0006-2952(61)90145-9
  • Farhan, M. M., Guma, M. A., Rabeea, M. A., Ahmad, I., & Patel, H. (2022). Synthesizes, characterization, molecular docking and in vitro bioactivity study of new compounds containing triple beta lactam rings. Journal of Molecular Structure, 1269, 133781. https://doi.org/10.1016/j.molstruc.2022.133781
  • Hammouda, M. B., Ahmad, I., Hamdi, A., Dbeibia, A., Patel, H., Bouali, N., Hamadou, W. S., Hosni, K., Ghannay, S., Alminderej, F., Noumi, E., Snoussi, M., Aouadi, K., & Kadri, A. (2022). Design, synthesis, biological evaluation and in silico studies of novel 1,2,3-triazole linked benzoxazine-2,4-dione conjugates as potent antimicrobial, antioxidant and anti-inflammatory agents. Arabian Journal of Chemistry, 15(11), 104226. https://doi.org/10.1016/j.arabjc.2022.104226
  • Hasan, A. H., Amran, S. I., Hussain, F. H. S., Jaff, B. A., & Jamalis, J. (2019). Molecular docking and recent advances in the design and development of cholinesterase inhibitor scaffolds: Coumarin hybrids. ChemistrySelect, 4(48), 14140–14156. https://doi.org/10.1002/slct.201903607
  • Hasan, A. H., Hussen, N. H., Shakya, S., Jamalis, J., Pratama, M. R. F., Chander, S., Kharkwal, H., & Murugesan, S. (2022). In silico discovery of multi-targeting inhibitors for the COVID-19 treatment by molecular docking, molecular dynamics simulation studies, and ADMET predictions. Structural Chemistry, 33(5), 1645–1665. https://doi.org/10.1007/s11224-022-01996-y
  • Hasan, H. A., Mohamed Yusof, F. S., Kamarudin, A. N., Murugesan, S., Shakya, S., & Jamalis, J. (2023). Synthesis, anti-acetylcholinesterase evaluation, molecular docking and molecular dynamics simulation of novel Psoralen derivatives. Current Organic Synthesis, 20, 1–1. https://doi.org/10.2174/1570179420666230328121554
  • Hasan, A. H., Murugesan, S., Amran, S. I., Chander, S., Alanazi, M. M., Hadda, T. B., Shakya, S., Pratama, M. R. F., Das, B., Biswas, S., & Jamalis, J. (2022). Novel thiophene Chalcones-Coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry, 119, 105572. https://doi.org/10.1016/j.bioorg.2021.105572
  • Hasan, A. H., Shakya, S., Hussain, F. H. S., Murugesan, S., Chander, S., Pratama, M. R. F., Jamil, S., Das, B., Biswas, S., & Jamalis, J. (2023). Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids. Journal of Biomolecular Structure and Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2162583
  • Hussen, N. H., Hasan, A. H., Jamalis, J., Shakya, S., Chander, S., Kharkwal, H., Murugesan, S., Ajit Bastikar, V., & Pyarelal Gupta, P. (2022). Potential inhibitory activity of phytoconstituents against black fungus: In silico ADMET, molecular docking and MD simulation studies. Computational Toxicology (Amsterdam, Netherlands), 24, 100247. https://doi.org/10.1016/j.comtox.2022.100247
  • Ishitsuka, H., Ninomiya, Y., Ohsawa, C., Fujiu, M., & Suhara, Y. (1982). Direct and specific inactivation of rhinovirus by chalcone Ro 09-0410. Antimicrobial Agents and Chemotherapy, 22(4), 617–621. https://doi.org/10.1128/AAC.22.4.617
  • Kang, L., Gao, X.-H., Liu, H.-R., Men, X., Wu, H.-N., Cui, P.-W., Oldfield, E., & Yan, J.-Y. (2018). Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors. Molecular Diversity, 22(4), 893–906. https://doi.org/10.1007/s11030-018-9839-y
  • Khan, S. A., & Asiri, A. M. (2017). Green synthesis, characterization and biological evaluation of novel chalcones as anti bacterial agents. Arabian Journal of Chemistry, 10, S2890–S2895. https://doi.org/10.1016/j.arabjc.2013.11.018
  • Kitagawa, I., Chen, W.-Z., Hori, K., Kobayashi, M., & Ren, J. (1998). Chemical studies of Chinese licorice-roots. II. Five new flavonoid constituents from the roots of Glycyrrhiza aspera PALL. Collected in Xinjiang. Chemical and Pharmaceutical Bulletin, 46(10), 1511–1517. https://doi.org/10.1248/cpb.46.1511
  • Kyogoku, K., Hatayama, K., Yokomori, S., Saziki, R., Nakane, S., Sasajima, M., Sawada, J., Ohzeki, M., & Tanaka, I. (1979). Anti-ulcer effect of isoprenyl flavonoids. II. Synthesis and anti-ulcer activity of new chalcones related to sophoradin. Chemical & Pharmaceutical Bulletin, 27(12), 2943–2953. https://doi.org/10.1248/cpb.27.2943
  • Lan, J.-S., Ding, Y., Liu, Y., Kang, P., Hou, J.-W., Zhang, X.-Y., Xie, S.-S., & Zhang, T. (2017). Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. European Journal of Medicinal Chemistry, 139, 48–59. https://doi.org/10.1016/j.ejmech.2017.07.055
  • Liu, H-r., Liu, X-j., Fan, H-q., Tang, J-j., Gao, X-h., & Liu, W.-K. (2014). Design, synthesis and pharmacological evaluation of chalcone derivatives as acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 22(21), 6124–6133. https://doi.org/10.1016/j.bmc.2014.08.033
  • Mahapatra, D. K., Asati, V., & Bharti, S. K. (2015). Chalcones and their therapeutic targets for the management of diabetes: Structural and pharmacological perspectives. European Journal of Medicinal Chemistry, 92, 839–865. https://doi.org/10.1016/j.ejmech.2015.01.051
  • Mateeva, N., Gangapuram, M., Mazzio, E., Eyunni, S., Soliman, K. F., & Redda, K. K. (2015). Biological evaluation of synthetic chalcone and flavone derivatives as anti-inflammatory agents. Medicinal Chemistry Research, 24(4), 1672–1680. https://doi.org/10.1007/s00044-014-1214-7
  • Matos, M. J., Vazquez-Rodriguez, S., Uriarte, E., & Santana, L. (2015). Potential pharmacological uses of chalcones: A patent review (from June 2011 – 2014). Expert Opinion on Therapeutic Patents, 25(3), 351–366. https://doi.org/10.1517/13543776.2014.995627
  • Nordberg, A., & Svensson, A.-L. (1998). Cholinesterase inhibitors in the treatment of Alzheimer’s disease. Drug Safety, 19(6), 465–480. https://doi.org/10.2165/00002018-199819060-00004
  • Osmaniye, D., Karaca, Ş., Kurban, B., Baysal, M., Ahmad, I., Patel, H., Özkay, Y., & Asım Kaplancıklı, Z. (2022). Design, synthesis, molecular docking and molecular dynamics studies of novel triazolothiadiazine derivatives containing furan or thiophene rings as anticancer agents. Bioorganic Chemistry, 122, 105709. https://doi.org/10.1016/j.bioorg.2022.105709
  • Paul, R. K., Ahmad, I., Patel, H., Kumar, V., & Raza, K. (2023). Phytochemicals from Amberboa ramosa as potential DPP-IV inhibitors for the management of Type-II diabetes mellitus: Inferences from in-silico investigations. Journal of Molecular Structure, 1271, 134045. https://doi.org/10.1016/j.molstruc.2022.134045
  • Rozmer, Z., Berki, T., & Perjési, P. (2006). Different effects of two cyclic chalcone analogues on cell cycle of Jurkat T cells. Toxicology in Vitro, 20(8), 1354–1362. https://doi.org/10.1016/j.tiv.2006.05.006
  • Salih, R. H. H., Hasan, A. H., Hussein, A. J., Samad, M. K., Shakya, S., Jamalis, J., Hawaiz, F. E., & Pratama, M. R. F. (2022). One-pot synthesis, molecular docking, ADMET, and DFT studies of novel pyrazolines as promising SARS-CoV-2 main protease inhibitors. Research on Chemical Intermediates, 48(11), 4729–4751. https://doi.org/10.1007/s11164-022-04831-5
  • Salih, R. H. H., Hasan, A. H., Hussen, N. H., Hawaiz, F. E., Hadda, T. B., Jamalis, J., Almalki, F. A., Adeyinka, A. S., Coetzee, L.-C. C., & Oyebamiji, A. K. (2023). Thiazole-pyrazoline hybrids as potential antimicrobial agent: Synthesis, biological evaluation, molecular docking, DFT studies and POM analysis. Journal of Molecular Structure, 1282, 135191. https://doi.org/10.1016/j.molstruc.2023.135191
  • Shaik, J. B., Palaka, B. K., Penumala, M., Kotapati, K. V., Devineni, S. R., Eadlapalli, S., Darla, M. M., Ampasala, D. R., Vadde, R., & Amooru, G. D. (2016). Synthesis, pharmacological assessment, molecular modeling and in silico studies of fused tricyclic coumarin derivatives as a new family of multifunctional anti-Alzheimer agents. European Journal of Medicinal Chemistry, 107, 219–232. https://doi.org/10.1016/j.ejmech.2015.10.046
  • Tople, M. S., Patel, N. B., Patel, P. P., Purohit, A. C., Ahmad, I., & Patel, H. (2023). An in silico-in vitro antimalarial and antimicrobial investigation of newer 7-chloroquinoline based Schiff-bases. Journal of Molecular Structure, 1271, 134016. https://doi.org/10.1016/j.molstruc.2022.134016
  • Tran, T.-D., Nguyen, T.-C.-V., Nguyen, N.-S., Nguyen, D.-M., Nguyen, T.-T.-H., Le, M.-T., & Thai, K.-M. (2016). Synthesis of novel chalcones as acetylcholinesterase inhibitors. Applied Sciences, 6(7), 198. https://doi.org/10.3390/app6070198
  • Wang, Y.-H., Dong, H.-H., Zhao, F., Wang, J., Yan, F., Jiang, Y.-Y., & Jin, Y.-S. (2016). The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans. Bioorganic & Medicinal Chemistry Letters, 26(13), 3098–3102. https://doi.org/10.1016/j.bmcl.2016.05.013
  • Wang, L., Wang, Y., Tian, Y., Shang, J., Sun, X., Chen, H., Wang, H., & Tan, W. (2017). Design, synthesis, biological evaluation, and molecular modeling studies of chalcone-rivastigmine hybrids as cholinesterase inhibitors. Bioorganic & Medicinal Chemistry, 25(1), 360–371. https://doi.org/10.1016/j.bmc.2016.11.002
  • Wimo, A., Jönsson, L., Bond, J., Prince, M., & Winblad, B. (2013). The worldwide economic impact of dementia 2010. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 9(1), 1–11.e13. https://doi.org/10.1016/j.jalz.2012.11.006
  • Won, S.-J., Liu, C.-T., Tsao, L.-T., Weng, J.-R., Ko, H.-H., Wang, J.-P., & Lin, C.-N. (2005). Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. European Journal of Medicinal Chemistry, 40(1), 103–112. https://doi.org/10.1016/j.ejmech.2004.09.006
  • Wu, J.-H., Wang, X.-H., Yi, Y.-H., & Lee, K.-H. (2003). Anti-AIDS agents 54. A potent anti-HIV chalcone and flavonoids from genus Desmos. Bioorganic & Medicinal Chemistry Letters, 13(10), 1813–1815. https://doi.org/10.1016/S0960-894X(03)00197-5
  • Yoon, Y. K., Ali, M. A., Wei, A. C., Choon, T. S., Khaw, K.-Y., Murugaiyah, V., Osman, H., & Masand, V. H. (2013). Synthesis, characterization, and molecular docking analysis of novel benzimidazole derivatives as cholinesterase inhibitors. Bioorganic Chemistry, 49, 33–39. https://doi.org/10.1016/j.bioorg.2013.06.008
  • Zhong, G., Guo, J., Pang, C., Su, D., Tang, C., Jing, L., Zhang, F., He, P., Yan, Y., Chen, Z., Liu, J., & Jiang, N. (2023). Novel AP2238-clorgiline hybrids as multi-target agents for the treatment of Alzheimer’s disease: Design, synthesis, and biological evaluation. Bioorganic Chemistry, 130, 106224. https://doi.org/10.1016/j.bioorg.2022.106224

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.