151
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Structural basis for the mechanism of interaction of SARS-CoV-2 B.1.640.2 variant RBD with the host receptors hACE2 and GRP78

, , , , , , , & show all
Pages 2034-2042 | Received 23 Jan 2023, Accepted 09 Apr 2023, Published online: 07 Jun 2023

References

  • Abdool Karim, S. S., & de Oliveira, T. (2021). New SARS-CoV-2 variants—clinical, public health, and vaccine implications. The New England Journal of Medicine, 384(19), 1866–1868. https://doi.org/10.1056/NEJMc2100362
  • Alnomasy, S. F. (2021). Virus-receptor interactions of SARS-CoV-2 spike receptor-binding domain and human neuropilin-1 b1 domain. Saudi Journal of Biological Sciences, 28(7), 3926–3928. https://doi.org/10.1016/j.sjbs.2021.03.074
  • Carlos, A. J., Ha, D. P., Yeh, D.-W., Van Krieken, R., Tseng, C.-C., Zhang, P., Gill, P., Machida, K., & Lee, A. S. (2021). The chaperone GRP78 is a host auxiliary factor for SARS-CoV-2 and GRP78 depleting antibody blocks viral entry and infection. The Journal of Biological Chemistry, 296, 100759–100759. https://doi.org/10.1016/j.jbc.2021.100759
  • Chen, C., Boorla, V. S., Banerjee, D., Chowdhury, R., Cavener, V. S., Nissly, R. H., Gontu, A., Boyle, N. R., Vandegrift, K., Nair, M. S., Kuchipudi, S. V., & Maranas, C. D. (2021). Computational prediction of the effect of amino acid changes on the binding affinity between SARS-CoV-2 spike RBD and human ACE2. Proceedings of the National Academy of Sciences, 118(42), 1-10. https://doi.org/10.1073/pnas.2106480118
  • Colson, P., Delerce, J., Burel, E., Dahan, J., Jouffret, A., Fenollar, F., Yahi, N., Fantini, J., La Scola, B., & Raoult, D. (2022). Emergence in southern France of a new SARS-CoV-2 variant harbouring both N501Y and E484K substitutions in the spike protein. Archives of Virology, 167(4), 1185–1190. https://doi.org/10.1007/s00705-022-05385-y
  • Colson, P., Parola, P., & Raoult, D. (2022). The emergence, dynamics and significance of SARS-CoV-2 variants. New Microbes and New Infections, 45, 100962. https://doi.org/10.1016/j.nmni.2022.100962
  • Cooperman, Y., & Allegretti, G. (2022). The French IHU variant: Should we be nervous?
  • Daly, J. L., Simonetti, B., Klein, K., Chen, K.-E., Williamson, M. K., Antón-Plágaro, C., Shoemark, D. K., Simón-Gracia, L., Bauer, M., Hollandi, R., Greber, U. F., Horvath, P., Sessions, R. B., Helenius, A., Hiscox, J. A., Teesalu, T., Matthews, D. A., Davidson, A. D., Collins, B. M., Cullen, P. J., & Yamauchi, Y. (2020). Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science (New York, N.Y.), 370(6518), 861–865. https://doi.org/10.1126/science.abd3072
  • Dehury, B., Raina, V., Misra, N., & Suar, M. (2021). Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: A molecular dynamics simulations study. Journal of Biomolecular Structure & Dynamics, 39(18), 7231–7245. https://doi.org/10.1080/07391102.2020.1802348
  • Dominguez, C., Boelens, R., & Bonvin, A. M. (2003). HADDOCK: A protein − protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
  • Elfiky, A. A. (2020). SARS-CoV-2 spike-heat shock protein A5 (GRP78) recognition may be related to the immersed human coronaviruses. Frontiers in Pharmacology, 11, 1997. https://doi.org/10.3389/fphar.2020.577467
  • Giron, C. C., Laaksonen, A., & da Silva, F. L. B. (2022). Differences between Omicron SARS-CoV-2 RBD and other variants in their ability to interact with cell receptors and monoclonal antibodies. BioRxiv.
  • Guan, W-j., Ni, Z-y., Hu, Y., Liang, W.H., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S. and Du, B. (2020). Clinical characteristics of 2019 novel coronavirus infection in China. Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine,382(18), 1708–1720.
  • Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., Liu, L., Shan, H., Lei, C.-L., Hui, D. S. C., Du, B., Li, L.-J., Zeng, G., Yuen, K.-Y., Chen, R.-C., Tang, C.-L., Wang, T., Chen, P.-Y., Xiang, J., … Zhong, N.-S, China Medical Treatment Expert Group for Covid-19. (2020). Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine, 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032
  • Gurung, A. B., Ali, M. A., Lee, J., Farah, M. A., Al-Anazi, K. M., Al-Hemaid, F., & Sami, H. (2022). Structural and functional insights into the major mutations of SARS-CoV-2 Spike RBD and its interaction with human ACE2 receptor. Journal of King Saud University Science, 34(2), 101773. https://doi.org/10.1016/j.jksus.2021.101773
  • Haque, S. M., Ashwaq, O., Sarief, A., & Azad John Mohamed, A. K. (2020). A comprehensive review about SARS-CoV-2. Future Virology, 15(9), 625–648. https://doi.org/10.2217/fvl-2020-0124
  • Hasöksüz, M., Kiliç, S., & Saraç, F. (2020). Coronaviruses and SARS-COV-2. Turkish Journal of Medical Sciences, 50(SI-1), 549–556. https://doi.org/10.3906/sag-2004-127
  • Hilal El Idrissi, H. (2020). COVID-19: What you need to know. Gene Reports, 20, 100756. https://doi.org/10.1016/j.genrep.2020.100756
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Ibrahim, I. M., Abdelmalek, D. H., Elshahat, M. E., & Elfiky, A. A. (2020). COVID-19 spike-host cell receptor GRP78 binding site prediction. The Journal of Infection, 80(5), 554–562. https://doi.org/10.1016/j.jinf.2020.02.026
  • Ibrahim, I. M., Elfiky, A. A., & Elgohary, A. M. (2021). Recognition through GRP78 is enhanced in the UK, South African, and Brazilian variants of SARS-CoV-2; an in silico perspective. Biochemical and Biophysical Research Communications, 562, 89–93. https://doi.org/10.1016/j.bbrc.2021.05.058
  • Khan, A., Gui, J., Ahmad, W., Haq, I., Shahid, M., Khan, A. A., Shah, A., Khan, A., Ali, L., Anwar, Z., Safdar, M., Abubaker, J., Uddin, N. N., Cao, L., Wei, D.-Q., & Mohammad, A. (2021). The SARS-CoV-2 B. 1.618 variant slightly alters the spike RBD–ACE2 binding affinity and is an antibody escaping variant: A computational structural perspective. RSC Advances, 11(48), 30132–30147. https://doi.org/10.1039/d1ra04694b
  • Khan, A., Heng, W., Wang, Y., Qiu, J., Wei, X., Peng, S., Saleem, S., Khan, M., Ali, S.S. & Wei, D.Q. (2021) In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro). Phytotherapy Research: PTR, 35(6), 2841–2845.
  • Khan, A., Mohammad, A., Haq, I., Nasar, M., Ahmad, W., Yousafi, Q., Suleman, M., Ahmad, S., Albutti, A., Khan, T., Marafie, S. K., Alshawaf, E., Ali, S. S., Abubaker, J., & Wei, D.-Q. (2021). Structural-dynamics and binding analysis of RBD from SARS-CoV-2 variants of concern (VOCs) and GRP78 receptor revealed basis for higher infectivity. Microorganisms, 9(11), 2331. https://doi.org/10.3390/microorganisms9112331
  • Khan, A., Tahir Khan, M., Saleem, S., Junaid, M., Ali, A., Shujait Ali, S., Khan, M., & Wei, D.-Q. (2020). Structural Insights into the mechanism of RNA recognition by the N-terminal RNA-binding domain of the SARS-CoV-2 nucleocapsid phosphoprotein. Computational and Structural Biotechnology Journal, 18, 2174–2184. https://doi.org/10.1016/j.csbj.2020.08.006
  • Khan, A., Waris, H., Rafique, M., Suleman, M., Mohammad, A., Ali, S. S., Khan, T., Waheed, Y., Liao, C., & Wei, D.-Q. (2022). The Omicron (B. 1.1. 529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data. International Journal of Biological Macromolecules, 200, 438–448. https://doi.org/10.1016/j.ijbiomac.2022.01.059
  • Khan, A., Wei, D.-Q., Kousar, K., Abubaker, J., Ahmad, S., Ali, J., Al‐Mulla, F., Ali, S.S., Nizam‐Uddin, N., Mohammad Sayaf, A. and Mohammad, A. (2021). Preliminary structural data revealed that the SARS-CoV-2 B. 1.617 variant’s RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity. ChemBioChem, 22(16), 2641–2649.
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Koukos, P. I., Reau, M. F., & Bonvin, A. M. (2021). Shape-restrained modelling of protein-small molecule complexes with HADDOCK. BioRxiv.
  • Kyrou, I., Randeva, H. S., Spandidos, D. A., & Karteris, E. (2021). Not only ACE2—the quest for additional host cell mediators of SARS-CoV-2 infection: Neuropilin-1 (NRP1) as a novel SARS-CoV-2 host cell entry mediator implicated in COVID-19. Signal Transduction and Targeted Therapy, 6(1), 21. https://doi.org/10.1038/s41392-020-00460-9
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Research, 29(1), 221–222. https://doi.org/10.1093/nar/29.1.221
  • Li, F. (2016). Structure, function, and evolution of coronavirus spike proteins. Annual Review of Virology, 3(1), 237–261. https://doi.org/10.1146/annurev-virology-110615-042301
  • Li, F., Li, W., Farzan, M., & Harrison, S. C. (2005). Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science (New York, N.Y.), 309(5742), 1864–1868. https://doi.org/10.1126/science.1116480
  • Li, J.-Y., You, Z., Wang, Q., Zhou, Z.-J., Qiu, Y., Luo, R., & Ge, X.-Y. (2020). The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes and Infection, 22(2), 80–85. https://doi.org/10.1016/j.micinf.2020.02.002
  • Roe, D. R., & Cheatham, T. E. III (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon‐Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Sheemar, S., & Kumar, R. (2022). Omicron, SARS CoV2 variant. International Journal of Medical and Dental Sciences, 11, 2024–2025. https://doi.org/10.18311/ijmds/2022/606
  • Shin, W.-J., Ha, D. P., Machida, K., & Lee, A. S. (2022). The stress-inducible ER chaperone GRP78/BiP is upregulated during SARS-CoV-2 infection and acts as a pro-viral protein. Nature Communications, 13(1), 6551. https://doi.org/10.1038/s41467-022-34065-3
  • Valério, M., Borges-Araújo, L., Melo, M. N., Lousa, D., & Soares, C. M. (2022). SARS-CoV-2 variants impact RBD conformational dynamics and ACE2 accessibility. Frontiers in Medical Technology, 4, 1–13. https://doi.org/10.3389/fmedt.2022.1009451
  • Wang, Q., Zhang, Y., Wu, L., Niu, S., Song, C., Zhang, Z., Lu, G., Qiao, C., Hu, Y., Yuen, K.-Y., Wang, Q., Zhou, H., Yan, J., & Qi, J. (2020). Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 181(4), 894–904. e9. https://doi.org/10.1016/j.cell.2020.03.045

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.