245
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

In silico screening of a series of 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines as potential selective inhibitors of the Janus kinase 3

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4456-4474 | Received 12 Feb 2023, Accepted 28 May 2023, Published online: 15 Jun 2023

References

  • Abdulhassan, H. A., Saleh, B. A., Harkati, D., Khelfaoui, H., Hewitt, N. L., & El-Hiti, G. A. (2022). In silico pesticide discovery for new anti-tobacco mosaic virus agents: Reactivity, molecular docking, and molecular dynamics simulations. Applied Sciences, 12(6), 2818. https://doi.org/10.3390/app12062818
  • Abraham, M. J., Murtola, T., Schulz, R., et al. (2019). GROMACS user manual version 2019.2. GROMACS Development Team. http://manual.gromacs.org/documentation/2019.2/index.html
  • Aletaha, D., & Smolen, J. S. (2018). Diagnosis and management of rheumatoid arthritis: A review. JAMA, 320(13), 1360–1372. https://doi.org/10.1001/jama.2018.13103
  • Allouche, A. (2011). Software news and updates gabedit—A graphical user interface for computational chemistry softwares. Journal of Computational Chemistry, 32(1), 174–182. https://doi.org/10.1002/jcc
  • Allouche, A. (2012). Software news and update PaDEL-descriptor: An open-source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(14), 3185–3191. https://doi.org/10.1002/jcc.23120
  • Andrea, T. A., & Kalayeh, H. (1991). Applications of neural networks in quantitative structure-activity relationships of dihydrofolate reductase inhibitors. Journal of Medicinal Chemistry, 34(9), 2824–2836. https://doi.org/10.1021/jm00113a022
  • Baclé, M. (2012). La polyarthrite rhumatoïde de l‘adulte: place et rôle du pharmacien d‘officine dans sa prise en charge et la délivrance des biothérapies à l‘officine.
  • Bahmani, A., Tanzadehpanah, H., Hosseinpour Moghadam, N., & Saidijam, M. (2021). Introducing a pyrazolopyrimidine as a multi-tyrosine kinase inhibitor, using multi-QSAR and docking methods. Molecular Diversity, 25(2), 949–965. https://doi.org/10.1007/s11030-020-10080-8
  • Banerjee, S., Biehl, A., Gadina, M., Hasni, S., & Schwartz, D. M. (2017). JAK–STAT signaling as a target for inflammatory and autoimmune diseases: Current and future prospects. Drugs, 77(5), 521–546. https://doi.org/10.1007/s40265-017-0701-9
  • Beura, S., & Chetti, P. (2021). In-silico strategies for probing chloroquine based inhibitors against SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(10), 3747–3759. https://doi.org/10.1080/07391102.2020.1772111
  • BIOVIA Discovery Studio. (2022). BIOVIA Discovery Studio Visualizer version 22.1.0.19898. Dassault Systèmes.
  • Boudjella, M. L., Boukara, Z., Ouldali, L., Haddouche, A., Oukid, S., Brahimi, A., & Taas, N. (2020). Study of the association of receptor genes for the Fc portion of immunoglobulin G with rheumatoid arthritis in a population of Algerian patients. Étude de l ’ association des gènes du récepteur pour la portion Fc des Immunoglobulines G avec la polyarthri. 34–36.
  • Casewit, C. J., Colwell, K. S., & Rappé, A. K. (1992). Application of a universal force field to organic molecules. Journal of the American Chemical Society, 114(25), 10035–10046. https://doi.org/10.1021/ja00051a041
  • Chander, S., Wang, P., Ashok, P., Yang, L. M., Zheng, Y. T., & Murugesan, S. (2016). Rational design, synthesis, anti-HIV-1 RT and antimicrobial activity of novel 3-(6-methoxy-3,4-dihydroquinolin-1(2H)-yl)-1-(piperazin-1-yl)propan-1-one derivatives. Bioorganic Chemistry, 67, 75–83. https://doi.org/10.1016/j.bioorg.2016.05.009
  • Chen, C., Yin, Y., Shi, G., Zhou, Y., Shao, S., Wei, Y., Wu, L., Zhang, D., Sun, L., & Zhang, T. (2022). A highly selective JAK3 inhibitor is developed for treating rheumatoid arthritis by suppressing γc cytokine–related JAK-STAT signal. Science Advances, 8(33), eabo4363. https://doi.org/10.1126/sciadv.abo4363
  • Clark, D. E. (2003). In silico prediction of blood–brain barrier permeation. Drug Discovery Today, 8(20), 927–933. https://doi.org/10.1016/S1359-6446(03)02827-7
  • Consonni, V., Ballabio, D., & Todeschini, R. (2010). Evaluation of model predictive ability by external validation techniques. Journal of Chemometrics, 24(3-4), 194–201. https://doi.org/10.1002/cem.1290
  • Cousins, K. R. (2011). Computer review of ChemDraw Ultra 12.0. Journal of the American Chemical Society, 133(21), 8388. https://doi.org/10.1021/ja204075s
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • DI, L., & Kerns, E. H. (2015). Drug-like properties: Concepts, structure design and methods from ADME to toxicity optimization. Academic press.
  • England, J. T., & Gupta, V. (2022). Fedratinib: A pharmacotherapeutic option for JAK-inhibitor naïve and exposed patients with myelofibrosis. Expert Opinion on Pharmacotherapy, 23(15), 1677–1686. https://doi.org/10.1080/14656566.2022.2135989
  • Fang, Y., Ni, J., Wang, Y.-S., Zhao, Y., Jiang, L.-Q., Chen, C., Zhang, R.-D., Fang, X., Wang, P., & Pan, H.-F. (2023). Exosomes as biomarkers and therapeutic delivery for autoimmune diseases: Opportunities and challenges. Autoimmunity Reviews, 22(3), 103260. https://doi.org/10.1016/j.autrev.2022.103260
  • Ferreira, L. L. G., & Andricopulo, A. D. (2019). ADMET modeling approaches in drug discovery. Drug Discovery Today, 24(5), 1157–1165. https://doi.org/10.1016/j.drudis.2019.03.015
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. (2009). Gaussian 09; Revision D. 02. ; Gaussian, Inc.
  • Gadek, T. R., & Nicholas, J. B. (2003). Small molecule antagonists of proteins. Biochemical Pharmacology, 65(1), 1–8. https://doi.org/10.1016/s0006-2952(02)01479-x
  • Goedken, E. R., Argiriadi, M. A., Banach, D. L., Fiamengo, B. A., Foley, S. E., Frank, K. E., George, J. S., Harris, C. M., Hobson, A. D., Ihle, D. C., Marcotte, D., Merta, P. J., Michalak, M. E., Murdock, S. E., Tomlinson, M. J., & Voss, J. W. (2015). Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. The Journal of Biological Chemistry, 290(8), 4573–4589. https://doi.org/10.1074/jbc.M114.595181
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2!. Journal of Molecular Graphics & Modelling, 20(4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
  • Goodsell, D. S., Dutta, S., Zardecki, C., Voigt, M., Berman, H. M., & Burley, S. K. (2015). The RCSB PDB “molecule of the month”: Inspiring a molecular view of biology. PLOS Biology, 13(5), e1002140. https://doi.org/10.1371/journal.pbio.1002140
  • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. QSAR & Combinatorial Science, 26(5), 694–701. https://doi.org/10.1002/qsar.200610151
  • Hadap, A., Pandey, A., Jain, B., & Rawat, R. (2023). Theories methods and the parameters of quantitative structure–activity relationships and artificial neural network. In Computational modelling and simulations for designing of corrosion inhibitors (pp. 319–335). https://doi.org/10.1016/B978-0-323-95161-6.00019-9
  • Hadni, H., & Elhallaoui, M. (2019). Molecular docking and QSAR studies for modeling the antimalarial activity of hybrids 4-anilinoquinoline-triazines derivatives with the wild-type and mutant receptor pf-DHFR. Heliyon, 5(8), e02357. https://doi.org/10.1016/j.heliyon.2019.e02357
  • Hadni, H., & Elhallaoui, M. (2020). 2D and 3D-QSAR, molecular docking and ADMET properties: In silico studies of azaaurones as antimalarial agents. New Journal of Chemistry, 44(16), 6553–6565. https://doi.org/10.1039/C9NJ05767F
  • Hadni, H., Mazigh, M., & El Hallaoui, M. (2019). QSAR and Molecular docking studies of 4-anilinoquinoline-triazine hybrids as pf-DHFR inhibitors. Mediterranean Journal of Chemistry, 8(2), 84–93. https://doi.org/10.13171/mjc8219040407hh
  • Hasler, P., & Gabay, C. (2017). Rheumatoid arthritis: From basic findings and clinical manifestations to future therapies. Seminars in Immunopathology, 39(4), 339–341. https://doi.org/10.1007/s00281-017-0635-z
  • He, L., Shao, M., Wang, T., Lan, T., Zhang, C., & Chen, L. (2018). Design, synthesis, and SAR study of highly potent, selective, irreversible covalent JAK3 inhibitors. Molecular Diversity, 22(2), 343–358. https://doi.org/10.1007/s11030-017-9803-2
  • Hillebrand, L., & Gehringer, M. (2022). Never gonna give you up – Current developments in covalent protein kinase inhibitors. CHIMIA, 76(5), 435. https://doi.org/10.2533/chimia.2022.435
  • I.N. Minitab, MINITAB statistical software, Minitab Release 21.1.0. (2021). I.N. Minitab, MINITAB statistical software, Minitab Release 21.1.0. www.minitab.com/en-us/products/minitab/
  • Im, W., Seefeld, S., & Roux, B. (2000). A grand canonical Monte Carlo-Brownian Dynamics algorithm for simulating ion channels. Biophysical Journal, 79(2), 788–801. https://doi.org/10.1016/S0006-3495(00)76336-3
  • Khelfaoui, H., Harkati, D., & Saleh, B. A. (2021). Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. Journal of Biomolecular Structure & Dynamics, 39(18), 7246–7262. https://doi.org/10.1080/07391102.2020.1803967
  • Kollman, P. A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donini, O., Cieplak, P., Srinivasan, J., Case, D. A., & Cheatham, T. E. (2000). Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Accounts of Chemical Research, 33(12), 889–897. https://doi.org/10.1021/ar000033j
  • Kontzias, A., Kotlyar, A., Laurence, A., Changelian, P., & O'Shea, J. J. (2012). Jakinibs: A new class of kinase inhibitors in cancer and autoimmune disease. Current Opinion in Pharmacology, 12(4), 464–470. https://doi.org/10.1016/j.coph.2012.06.008
  • Lahimchi, M. R., Eslami, M., & Yousefi, B. (2023). Interleukin-35 and Interleukin-37 anti-inflammatory effect on inflammatory bowel disease: Application of non-coding RNAs in IBD therapy. International Immunopharmacology, 117, 109932. https://doi.org/10.1016/j.intimp.2023.109932
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64(SUPPL), 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mather, B. D., Viswanathan, K., Miller, K. M., & Long, T. E. (2006). Michael addition reactions in macromolecular design for emerging technologies. Progress in Polymer Science, 31(5), 487–531. https://doi.org/10.1016/j.progpolymsci.2006.03.001
  • McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. The New England Journal of Medicine, 365(23), 2205–2219. https://doi.org/10.1056/NEJMra1004965
  • Mohanakrishnan, R., Beier, S., & Deodhar, A. (2022). Tofacitinib for the treatment of active ankylosing spondylitis in adults. Expert Review of Clinical Immunology, 18(3), 273–280. https://doi.org/10.1080/1744666X.2022.2038134
  • Molecular operating Environment (MOE). (2015). Molecular operating Environment (MOE) 2013.08, chemical Computing Group Inc., 1010 Sherbooke St. West, Suite 910, 2014. Montreal, QC, Canada, H3A2R77
  • Mouat, I. C., Goldberg, E., & Horwitz, M. S. (2022). Age-associated B cells in autoimmune diseases. Cellular and Molecular Life Sciences, 79(8), 402. https://doi.org/10.1007/s00018-022-04433-9
  • Netzeva, T. I., Worth, A., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica, P., Jaworska, J. S., Kahn, S., Klopman, G., Marchant, C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R., Roberts, D., Schultz, T., Stanton, D. W., van de Sandt, J. J. M., Tong, W., Veith, G., & Yang, C. (2005). Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. Alternatives to Laboratory Animals: ATLA, 33(2), 155–173. https://doi.org/10.1177/026119290503300209
  • Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., & Schulten, K. (2005). Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 26(16), 1781–1802. https://doi.org/10.1002/jcc.20289
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pravin, A. (2013). Pravin Ambure ([email protected]) of Drug Theoretics & Cheminformatics (DTC) Laboratory, Jadavpur University.
  • Purmonen, M., Valjakka, J., Takkinen, K., Laitinen, T., & Rouvinen, J. (2007). Molecular dynamics studies on the thermostability of family 11 xylanases. Protein Engineering, Design & Selection : PEDS, 20(11), 551–559. https://doi.org/10.1093/protein/gzm056
  • Ramírez, D., & Caballero, J. (2018). Is it reliable to take the molecular docking top scoring position as the best solution without considering available structural data? Molecules, 23(5), 1038. https://doi.org/10.3390/molecules23051038
  • Ramsey, P. (2019). Analysis strategies for constrained mixture and mixture process experiments. SIMB Annual Meeting and Exhibition 2019.
  • Ramsey, P. J. (2022). Analysis strategies for constrained mixture and mixture process experiments using JMP Pro 14. JMP Discovery Summit, 7.
  • Roy, K., Kar, S., & Das, R. N. (2015). Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment (1st ed.). Elsevier.
  • Rucker, C., Rucker, G., & Meringer, M. (2007). Y-randomization-A useful tool in QSAR validation, or folklore. Journal of Chemical Information and Modeling, 47(6), 2345–2357. https://doi.org/10.1021/ci700157b
  • Sahigara, F., Mansouri, K., Ballabio, D., Mauri, A., Consonni, V., & Todeschini, R. (2012). Comparison of different approaches to define the applicability domain of QSAR models. Molecules (Basel, Switzerland), 17(5), 4791–4810. https://doi.org/10.3390/molecules17054791
  • Sarvagalla, S., Syed, S. B., & Coumar, M. S. (2019). An overview of computational methods, tools, servers, and databases for drug repurposing. In In silico drug design (pp. 743–780). https://doi.org/10.1016/B978-0-12-816125-8.00025-0
  • Schrödinger Release 2021-1. (2021). Schrödinger Release 2021-1. Maestro, Schrödinger, LLC: New York, NY, USA.
  • Signals Lead Discovery. (2022). Signals Lead Discovery—Chemical Analytics—PerkinElmer Informatics; PerkinElmer: Waltham, MA, USA.
  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29(6-7), 476–488. https://doi.org/10.1002/minf.201000061
  • Väliaho, H., & Pekkonen, T. (1976). A Procedure for Stepwise Regression Analysis, (Vol. 9) https://doi.org/10.1515/9783112546024
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, D.-P., Wu, L.-H., Li, R., He, N., Zhang, Q.-Y., Zhao, C.-Y., & Jiang, T. (2023). A novel aldisine derivative exhibits potential antitumor effects by targeting JAK/STAT3 signaling. Marine Drugs, 21(4), 218. https://doi.org/10.3390/md21040218
  • Weyand, C. M., Goronzy, J. J., Takemura, S., & Kurtin, P. J. (2000). Cell-cell interactions in synovitis: Interactions between T cells and B cells in rheumatoid arthritis. Arthritis Research, 2(6), 457–463. https://doi.org/10.1186/ar128
  • Yamada, Y., Gohda, S., Abe, K., Togo, T., Shimano, N., Sasaki, T., Tanaka, H., Ono, H., Ohba, T., Kubo, S., Ohkubo, T., & Sato, S. (2017). Carbon materials with controlled edge structures. Carbon, 122, 694–701. https://doi.org/10.1016/j.carbon.2017.07.012
  • Yin, Y., Chen, C.-J., Yu, R.-N., Shu, L., Wang, Z.-J., Zhang, T.-T., & Zhang, D.-Y. (2020). Bioorganic Chemistry Novel 1H-pyrazolo[3,4-d]pyrimidin-6-amino derivatives as potent selective Janus kinase 3 (JAK3) inhibitors. Evaluation of their improved effect for the treatment of rheumatoid arthritis. Bioorganic Chemistry, 98, 103720. https://doi.org/10.1016/j.bioorg.2020.103720
  • Zekri, A., Harkati, D., Kenouche, S., & Saleh, B. A. (2020). QSAR modeling, docking, ADME and reactivity of indazole derivatives as antagonizes of estrogen receptor alpha (ER-α) positive in breast cancer. Journal of Molecular Structure, 1217, 128442. https://doi.org/10.1016/j.molstruc.2020.128442
  • Zekri, A., Harkati, D., Kenouche, S., Saleh, B. A., & Alnajjar, R. (2022). A computational study of potent series of selective estrogen receptor degraders for breast cancer therapy. Journal of Biomolecular Structure and Dynamics, 1–23. https://doi.org/10.1080/07391102.2022.2159877
  • Zeng, L., Yu, G., Yang, K., Xiang, W., Li, J., & Chen, H. (2022). Efficacy and safety of mesenchymal stem cell transplantation in the treatment of autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, inflammatory bowel disease, multiple sclerosis, and ankylosing spondylitis): A systematic review and meta-analysis of randomized controlled trial. Stem Cells International, 2022, 9463314. https://doi.org/10.1155/2022/9463314
  • Zhong, H. A., & Almahmoud, S. (2023). Docking and selectivity studies of covalently bound Janus kinase 3 inhibitors. International Journal of Molecular Sciences, 24(7), 6023. https://doi.org/10.3390/ijms24076023
  • Zubair, T., & Bandyopadhyay, D. (2023). Small molecule EGFR inhibitors as anti-cancer agents: Discovery, mechanisms of action, and opportunities. International Journal of Molecular Sciences, 24(3), 2651. https://doi.org/10.3390/ijms24032651

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.