134
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Human indoleamine-2,3-dioxygenase 2 cofactor lability and low substrate affinity explained by homology modeling, molecular dynamics and molecular docking

, &
Pages 4475-4488 | Received 07 Mar 2023, Accepted 28 May 2023, Published online: 10 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Austin, C. J., & Rendina, L. M. (2015). Targeting key dioxygenases in tryptophan–kynurenine metabolism for immunomodulation and cancer chemotherapy. Drug Discovery Today, 20(5), 609–617. https://doi.org/10.1016/j.drudis.2014.11.007
  • Ball, H. J., Sanchez-Perez, A., Weiser, S., Austin, C. J., Astelbauer, F., Miu, J., McQuillan, J. A., Stocker, R., Jermiin, L. S., & Hunt, N. H. (2007). Characterization of an indoleamine 2, 3-dioxygenase-like protein found in humans and mice. Gene, 396(1), 203–213. https://doi.org/10.1016/j.gene.2007.04.010
  • Ball, H. J., Yuasa, H. J., Austin, C. J., Weiser, S., & Hunt, N. H. (2009). Indoleamine 2, 3-dioxygenase-2; a new enzyme in the kynurenine pathway. The International Journal of Biochemistry & Cell Biology, 41(3), 467–471. https://doi.org/10.1016/j.biocel.2008.01.005
  • Bauer, P., Barrozo, A., Purg, M., Amrein, B. A., Esguerra, M., Wilson, P. B., Major, D. M., Åqvist, J., & Kamerlin, S. C. L. (2018). Q6: A comprehensive toolkit for empirical valence bond and related free energy calculations. SoftwareX, 7, 388–395. https://doi.org/10.1016/j.softx.2017.12.001
  • Chilosi, M., Doglioni, C., Ravaglia, C., Martignoni, G., Salvagno, G. L., Pizzolo, G., Bronte, G., & Poletti, V. (2022). Unbalanced IDO1/IDO2 endothelial expression and skewed keynurenine pathway in the pathogenesis of COVID-19 and post-COVID-19 pneumonia. Biomedicines, 10(6), 1332. (https://doi.org/10.3390/biomedicines10061332
  • Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881
  • Dolšak, A., Gobec, S., & Sova, M. (2021). Indoleamine and tryptophan 2, 3-dioxygenases as important future therapeutic targets. Pharmacology & Therapeutics, 221, 107746. https://doi.org/10.1016/j.pharmthera.2020.107746
  • Duarte, F., Amrein, B. A., Blaha-Nelson, D., & Kamerlin, S. C. L. (2015). Recent advances in QM/MM free energy calculations using reference potentials. Biochimica Et Biophysica Acta, 1850(5), 954–965. https://doi.org/10.1016/j.bbagen.2014.07.008
  • Fallarino, F., Grohmann, U., & Puccetti, P. (2012). Indoleamine 2, 3‐dioxygenase: From catalyst to signaling function. European Journal of Immunology, 42(8), 1932–1937. https://doi.org/10.1002/eji.201242572
  • Fatokun, A. A., Hunt, N. H., & Ball, H. J. (2013). Indoleamine 2, 3-dioxygenase 2 (IDO2) and the kynurenine pathway: Characteristics and potential roles in health and disease. Amino Acids, 45(6), 1319–1329. https://doi.org/10.1007/s00726-013-1602-1
  • Giudetti, G., Polyakov, I., Grigorenko, B. L., Faraji, S., Nemukhin, A. V., & Krylov, A. I. (2022). How reproducible are QM/MM simulations? Lessons from computational studies of the covalent inhibition of the SARS-CoV-2 main protease by carmofur. Journal of Chemical Theory and Computation, 18(8), 5056–5067. https://doi.org/10.1021/acs.jctc.2c00286
  • Greenwood, J. R., Calkins, D., Sullivan, A. P., & Shelley, J. C. (2010). Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. Journal of Computer-Aided Molecular Design, 24(6-7), 591–604. https://doi.org/10.1007/s10822-010-9349-1
  • Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. ELECTROPHORESIS, 30(S1), S162–S173. https://doi.org/10.1002/elps.200900140
  • Guo, L., Schurink, B., Roos, E., Nossent, E. J., Duitman, J. W., Vlaar, A. P., van der Valk, P., Vaz, F. M., Yeh, S.-R., Geeraerts, Z., Dijkhuis, A., van Vught, L., Bugiani, M., & Lutter, R, also on behalf of the Amsterdam UMC COVID-19 Biobank Study Group. (2022). Indoleamine 2, 3‐dioxygenase (IDO)‐1 and IDO‐2 activity and severe course of COVID‐19. The Journal of Pathology, 256(3), 256–261. https://doi.org/10.1002/path.5842
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • He, X., He, G., Chu, Z., Wu, H., Wang, J., Ge, Y., Shen, H., Zhang, S., Shan, J., Peng, K., Wei, Z., Zou, Y., Xu, Y., & Zhu, Q. (2021). Discovery of the first potent IDO1/IDO2 dual inhibitors: A promising strategy for cancer immunotherapy. Journal of Medicinal Chemistry, 64(24), 17950–17968. https://doi.org/10.1021/acs.jmedchem.1c01305
  • Jacobson, M. P., Friesner, R. A., Xiang, Z., & Honig, B. (2002). On the role of the crystal environment in determining protein side-chain conformations. Journal of Molecular Biology, 320(3), 597–608. https://doi.org/10.1016/s0022-2836(02)00470-9
  • Jacobson, M. P., Pincus, D. L., Rapp, C. S., Day, T. J., Honig, B., Shaw, D. E., & Friesner, R. A. (2004). A hierarchical approach to all‐atom protein loop prediction. Proteins, 55(2), 351–367. https://doi.org/10.1002/prot.10613
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Lee, Y. K., Lee, H. B., Shin, D. M., Kang, M. J., Yi, E. C., Noh, S., Lee, J., Lee, C., Min, C.-K., & Choi, E. Y. (2014). Heme-binding-mediated negative regulation of the tryptophan metabolic enzyme indoleamine 2, 3-dioxygenase 1 (IDO1) by IDO2. Experimental & Molecular Medicine, 46(11), e121–e121. https://doi.org/10.1038/emm.2014.69
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, H., Robertson, A. D., & Jensen, J. H. (2005). Very fast empirical prediction and rationalization of protein pKa values. Proteins, 61(4), 704–721. https://doi.org/10.1002/prot.20660
  • Li, P., Xu, W., Liu, F., Zhu, H., Zhang, L., Ding, Z., Liang, H., & Song, J. (2021). The emerging roles of IDO2 in cancer and its potential as a therapeutic target. Biomedicine & Pharmacotherapy, 137, 111295. https://doi.org/10.1016/j.biopha.2021.111295
  • Löb, S., Königsrainer, A., Zieker, D., Brücher, B. L., Rammensee, H. G., Opelz, G., & Terness, P. (2009). IDO1 and IDO2 are expressed in human tumors: Levo-but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunology, Immunotherapy : CII, 58(1), 153–157. https://doi.org/10.1007/s00262-008-0513-6
  • Long, G. V., Dummer, R., Hamid, O., Gajewski, T. F., Caglevic, C., Dalle, S., Arance, A., Carlino, M. S., Grob, J.-J., Kim, T. M., Demidov, L., Robert, C., Larkin, J., Anderson, J. R., Maleski, J., Jones, M., Diede, S. J., & Mitchell, T. C. (2019). Epacadostat plus pembrolizumab versus placebo plus pembrolizumab in patients with unresectable or metastatic melanoma (ECHO-301/KEYNOTE-252): A phase 3, randomised, double-blind study. The Lancet. Oncology, 20(8), 1083–1097. https://doi.org/10.1016/S1470-2045(19)30274-8
  • MacKerell, A. D., Jr, Banavali, N., & Foloppe, N. (2000). Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 56(4), 257–265. https://doi.org/10.1002/1097-0282(2000)56:4<257::AID-BIP10029>3.0.CO;2-W
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Mandarano, M., Bellezza, G., Belladonna, M. L., Vannucci, J., Gili, A., Ferri, I., Lupi, C., Ludovini, V., Falabella, G., Metro, G., Mondanelli, G., Chiari, R., Cagini, L., Stracci, F., Roila, F., Puma, F., Volpi, C., & Sidoni, A. (2020). Indoleamine 2, 3-dioxygenase 2 immunohistochemical expression in resected human non-small cell lung cancer: A potential new prognostic tool. Frontiers in Immunology, 11, 1–10. https://doi.org/10.3389/fimmu.2020.00839
  • McGeagh, J. D., Ranaghan, K. E., & Mulholland, A. J. (2011). Protein dynamics and enzyme catalysis: Insights from simulations. Biochimica Et Biophysica Acta, 1814(8), 1077–1092. https://doi.org/10.1016/j.bbapap.2010.12.002
  • Meininger, D., Zalameda, L., Liu, Y., Stepan, L. P., Borges, L., McCarter, J. D., & Sutherland, C. L. (2011). Purification and kinetic characterization of human indoleamine 2, 3-dioxygenases 1 and 2 (IDO1 and IDO2) and discovery of selective IDO1 inhibitors. Biochimica Et Biophysica Acta, 1814(12), 1947–1954. https://doi.org/10.1016/j.bbapap.2011.07.023
  • Merlo, L. M., Bowers, J., Stefanoni, T., Gordon, G. V., Getts, R., & Mandik-Nayak, L. (2021). The immunomodulating enzyme indoleamine 2, 3-dioxygenase 2 (IDO2) as a target for therapy in autoimmune disease. The Journal of Immunology, 206(1_Supplement), 66.01–66.01. https://doi.org/10.4049/jimmunol.206.Supp.66.01
  • Merlo, L. M., DuHadaway, J. B., Montgomery, J. D., Peng, W. D., Murray, P. J., Prendergast, G. C., Caton, A. J., Muller, A. J., & Mandik-Nayak, L. (2020). Differential roles of IDO1 and IDO2 in T and B cell inflammatory immune responses. Frontiers in Immunology, 11, 1–16. https://doi.org/10.3389/fimmu.2020.01861
  • Mirgaux, M., Leherte, L., & Wouters, J. (2020). Influence of the presence of the heme cofactor on the JK-loop structure in indoleamine 2, 3-dioxygenase 1. Acta Crystallographica. Section D, Structural Biology, 76(Pt 12), 1211–1221. https://doi.org/10.1107/S2059798320013510
  • Mirgaux, M., Leherte, L., & Wouters, J. (2021). Temporary intermediates of L-Trp along the reaction pathway of human indoleamine 2, 3-dioxygenase 1 and identification of an exo site. International Journal of Tryptophan Research, 14, 117864692110529. https://doi.org/10.1177/11786469211052964
  • Mirgaux, M. (2022). [Plasticity of human indoleamine-2,3-dioxygenases 1 and 2 through a structural approach combining crystallography and Molecular Dynamics studies]. [PhD thesis]. University of Namur.
  • Mondanelli, G., Mandarano, M., Belladonna, M. L., Suvieri, C., Pelliccia, C., Bellezza, G., Sidoni, A., Carvalho, A., Grohmann, U., & Volpi, C. (2021). Current challenges for IDO2 as target in cancer immunotherapy. Frontiers in Immunology, 12, 1–7. https://doi.org/10.3389/fimmu.2021.679953
  • Olsson, M. A., & Ryde, U. (2017). Comparison of QM/MM methods to obtain ligand-binding free energies. Journal of Chemical Theory and Computation, 13(5), 2245–2253. https://doi.org/10.1021/acs.jctc.6b01217
  • Opitz, C. A., Somarribas Patterson, L. F., Mohapatra, S. R., Dewi, D. L., Sadik, A., Platten, M., & Trump, S. (2020). The therapeutic potential of targeting tryptophan catabolism in cancer. British Journal of Cancer, 122(1), 30–44. https://doi.org/10.1038/s41416-019-0664-6
  • Pantouris, G., Serys, M., Yuasa, H. J., Ball, H. J., & Mowat, C. G. (2014). Human indoleamine 2, 3-dioxygenase-2 has substrate specificity and inhibition characteristics distinct from those of indoleamine 2, 3-dioxygenase-1. Amino Acids, 46(9), 2155–2163. https://doi.org/10.1007/s00726-014-1766-3
  • Pham, K. N., Lewis-Ballester, A., & Yeh, S. R. (2020). Conformational plasticity in human Heme-Based dioxygenases. Journal of the American Chemical Society, 143(4), 1836–1845.
  • Repič, M., Purg, M., Vianello, R., & Mavri, J. (2014). Examining electrostatic preorganization in monoamine oxidases A and B by structural comparison and pKa calculations. The Journal of Physical Chemistry. B, 118(16), 4326–4332. https://doi.org/10.1021/jp500795p
  • Röhrig, U. F., Majjigapu, S. R., Caldelari, D., Dilek, N., Reichenbach, P., Ascencao, K., Irving, M., Coukos, G., Vogel, P., Zoete, V., & Michielin, O. (2016). 1, 2, 3-Triazoles as inhibitors of indoleamine 2, 3-dioxygenase 2 (IDO2). Bioorganic & Medicinal Chemistry Letters, 26(17), 4330–4333. https://doi.org/10.1016/j.bmcl.2016.07.031
  • Röhrig, U. F., Michielin, O., & Zoete, V. (2021). Structure and plasticity of indoleamine 2, 3-dioxygenase 1 (IDO1). Journal of Medicinal Chemistry, 64(24), 17690–17705.
  • Schrödinger, LLC. Version 1.7.4.4, November (2015). The PyMOL molecular graphics system.
  • Schwartz, S. D. (2023). Protein dynamics and enzymatic catalysis. The Journal of Physical Chemistry. B, 127(12), 2649–2660. https://doi.org/10.1021/acs.jpcb.3c00477
  • Sham, Y. Y., Chu, Z. T., & Warshel, A. (1997). Consistent calculations of pKa’s of ionizable residues in proteins: Semi-microscopic and microscopic approaches. The Journal of Physical Chemistry B, 101(22), 4458–4472. https://doi.org/10.1021/jp963412w
  • Shelley, J. C., Cholleti, A., Frye, L. L., Greenwood, J. R., Timlin, M. R., & Uchimaya, M. (2007). Epik: A software program for pK a prediction and protonation state generation for drug-like molecules. Journal of Computer-Aided Molecular Design, 21(12), 681–691. https://doi.org/10.1007/s10822-007-9133-z
  • Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics (Oxford, England), 36(6), 1765–1771. https://doi.org/10.1093/bioinformatics/btz828
  • The UniProt Consortium. (2021). UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Research, 49(D1), D480–D489.
  • Tzeliou, C. E., Mermigki, M. A., & Tzeli, D. (2022). Review on the QM/MM methodologies and their application to metalloproteins. Molecules, 27(9), 2660. https://doi.org/10.3390/molecules27092660
  • Uyttenhove, C., Pilotte, L., Théate, I., Stroobant, V., Colau, D., Parmentier, N., Boon, T., & Van den Eynde, B. J. (2003). Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nature Medicine, 9(10), 1269–1274. https://doi.org/10.1038/nm934
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, E., Lutfi, M., … Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Vennelakanti, V., Nazemi, A., Mehmood, R., Steeves, A. H., & Kulik, H. J. (2022). Harder, better, faster, stronger: Large-scale QM and QM/MM for predictive modeling in enzymes and proteins. Current Opinion in Structural Biology, 72, 9–17. https://doi.org/10.1016/j.sbi.2021.07.004
  • Warshel, A., & Bora, R. P. (2016). Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. The Journal of Chemical Physics, 144(18), 180901. https://doi.org/10.1063/1.4947037
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P.,Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research, 46(W1), W296–W303.
  • Witkiewicz, A. K., Costantino, C. L., Metz, R., Muller, A. J., Prendergast, G. C., Yeo, C. J., & Brody, J. R. (2009). Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. Journal of the American College of Surgeons, 208(5), 781–787.
  • Zoete, V., Cuendet, M. A., Grosdidier, A., & Michielin, O. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry, 32(11), 2359–2368. https://doi.org/10.1002/jcc.21816

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.