144
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the structural impact of Omicron RBD mutation on antibody escape and receptor management

, &
Pages 4668-4678 | Received 08 Nov 2022, Accepted 01 Jun 2023, Published online: 19 Jun 2023

References

  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/PROT.340170408
  • Amir, M., Mohammad, T., Kumar, V., Alajmi, M. F., Rehman, M. T., Hussain, A., Alam, P., Dohare, R., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Frontiers in Molecular Biosciences, 6(June), 41. https://doi.org/10.3389/FMOLB.2019.00041/BIBTEX
  • Boateng, H. A. (2020). Periodic Coulomb tree method: An alternative to parallel particle mesh Ewald. Journal of Chemical Theory and Computation, 16(1), 7–17. https://doi.org/10.1021/ACS.JCTC.9B00648/SUPPL_FILE/CT9B00648_SI_001.PDF
  • Bonvin Lab. HADDOCK 2.4 antibody—antigen tutorial using PDB-tools webserver. https://www.bonvinlab.org/education/HADDOCK24/HADDOCK24-antibody-antigen/
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
  • Brown, D., & Clarke, J. H. R. (1984). A comparison of constant energy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids. Molecular Physics. 51(5), 1243–1252. https://doi.org/10.1080/00268978400100801
  • Cameroni, E., Bowen, J. E., Rosen, L. E., Saliba, C., Zepeda, S. K., Culap, K., Pinto, D., VanBlargan, L. A., De Marco, A., di Iulio, J., Zatta, F., Kaiser, H., Noack, J., Farhat, N., Czudnochowski, N., Havenar-Daughton, C., Sprouse, K. R., Dillen, J. R., Powell, A. E., … Corti, D. (2022). Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift. Nature, 602(7898), 664–670. 2021 602:7898Dec https://doi.org/10.1038/s41586-021-04386-2
  • Cao, Y., Wang, J., Jian, F., Xiao, T., Song, W., Yisimayi, A., Huang, W., Li, Q., Wang, P., An, R., Wang, J., Wang, Y., Niu, X., Yang, S., Liang, H., Sun, H., Li, T., Yu, Y., Cui, Q., … Xie, X. S. (2022). Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. Nature, 602(7898), 657–663. https://doi.org/10.1038/s41586-021-04385-3
  • Corey, L., Beyrer, C., Cohen, M. S., Michael, N. L., Bedford, T., & Rolland, M. (2021). SARS-CoV-2 variants in patients with immunosuppression. The New England Journal of Medicine, 385(6), 562–566. https://doi.org/10.1056/NEJMSB2104756/SUPPL_FILE/NEJMSB2104756_DISCLOSURES.PDF
  • Daidone, I., & Amadei, A. (2012). Essential dynamics: Foundation and applications. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2(5), 762–770. https://doi.org/10.1002/wcms.1099
  • Dejnirattisai, W., Huo, J., Zhou, D., Zahradník, J., Supasa, P., Liu, C., Duyvesteyn, H. M. E., Ginn, H. M., Mentzer, A. J., Tuekprakhon, A., Nutalai, R., Wang, B., Dijokaite, A., Khan, S., Avinoam, O., Bahar, M., Skelly, D., Adele, S., Johnson, S. A., … Screaton, G. R, ISARIC4C Consortium. (2022). SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses. Cell, 185(3), 467–484.e15. https://doi.org/10.1016/J.CELL.2021.12.046
  • Deng, Y., & Roux, B. (2006). Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A mutant. Journal of Chemical Theory and Computation, 2(5), 1255–1273. https://doi.org/10.1021/CT060037V
  • Fischer, W., Giorgi, E. E., Chakraborty, S., Nguyen, K., Bhattacharya, T., Theiler, J., Goloboff, P. A., Yoon, H., Abfalterer, W., Foley, B. T., Tegally, H., San, J. E., de Oliveira, T., Gnanakaran, S., & Korber, B, Network for Genomic Surveillance in South Africa (NGS-SA). (2021). HIV-1 and SARS-CoV-2: Patterns in the evolution of two pandemic pathogens. Cell Host & Microbe, 29(7), 1093–1110. https://doi.org/10.1016/J.CHOM.2021.05.012
  • Goddard, T. D., Huang, C. C., Meng, E. C., Pettersen, E. F., Couch, G. S., Morris, J. H., & Ferrin, T. E. (2018). UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Science: A Publication of the Protein Society, 27(1), 14–25. https://doi.org/10.1002/PRO.3235
  • Gohlke, H., & Case, D. A. (2004). Converging free energy estimates: MM-PB(GB)SA studies on the protein–protein complex Ras–Raf. Journal of Computational Chemistry, 25(2), 238–250. https://doi.org/10.10.1002/JCC.10379
  • GROMACS. Molecular dynamics—GROMACS 2019-rc1 documentation. https://manual.gromacs.org/documentation/2019-rc1/reference-manual/algorithms/molecular-dynamics.html
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/ELPS.1150181505
  • Hastie, K. M., Li, H., Bedinger, D., Schendel, S. L., Dennison, S. M., Li, K., Rayaprolu, V., Yu, X., Mann, C., Zandonatti, M., Diaz Avalos, R., Zyla, D., Buck, T., Hui, S., Shaffer, K., Hariharan, C., Yin, J., Olmedillas, E., Enriquez, A., … Saphire, E. O, CoVIC-DB team. (2021). Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science (1979), 374(6566), 472–478. https://doi.org/10.10.1126/SCIENCE.ABH2315
  • Hess, H. B., Bekker, H. J. C., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Honorato, R. V., Koukos, P. I., Jiménez-García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. M. J. J. (2021). Structural biology in the clouds: The WeNMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8, 708. https://doi.org/10.3389/FMOLB.2021.729513/XML/NLM
  • Hu, J., & Wang, C. (2010). Molecular dynamics simulation of HIV-1 integrase dimer complexed with viral DNA. Chinese Journal of Chemistry, 28(1), 33–40. https://doi.org/10.1002/cjoc.201090032
  • Jawad, B., Adhikari, P., Podgornik, R., & Ching, W. Y. (2021). Key interacting residues between RBD of SARS-CoV-2 and ACE2 receptor: Combination of molecular dynamics simulation and density functional calculation. Journal of Chemical Information and Modeling, 61(9), 4425–4441. https://doi.org/10.1021/ACS.JCIM.1C00560
  • Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H.-G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838), 498–502. https://doi.org/10.1038/s41586-020-2665-2
  • Khan, M. T., Ali, S., Zeb, M. T., Kaushik, A. C., Malik, S. I., & Wei, D. Q. (2020). Gibbs free energy calculation of mutation in PncA and RpsA associated with pyrazinamide resistance. Frontiers in Molecular Biosciences, 7, 52. https://doi.org/10.3389/FMOLB.2020.00052/BIBTEX
  • Khan, F. I., D., Wei, D. Q. K., Gu, K. R., Hassan, M. H.-I., & Tabrez, S. (2016). Current updates on computer aided protein modeling and designing. International Journal of Biological Macromolecules, 85, 48–62.
  • Krawczyk, K., Liu, X., Baker, T., Shi, J., & Deane, C. M. (2014). Improving B-cell epitope prediction and its application to global antibody-antigen docking. Bioinformatics (Oxford, England), 30(16), 2288–2294. https://doi.org/10.1093/BIOINFORMATICS/BTU190
  • Krebs, B. B., De Mesquita, J. DF. M.-P, one, and undefined. (2016). Amyotrophic lateral sclerosis type 20—In silico analysis and molecular dynamics simulation of hnRNPA1. PLoS One, 11(7), e0158939. [Online].
  • Kupferschmidt, K. (2021). Where did ‘weird’ Omicron come from? Science (1979), 374(6572), 1179. https://doi.org/10.1126/SCIENCE.ACX9738
  • Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., & Im, W. (2016). CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. Journal of Chemical Theory and Computation, 12(1), 405–413. https://doi.org/10.1021/ACS.JCTC.5B00935/ASSET/IMAGES/LARGE/CT-2015-00935E_0005.JPEG
  • Leist, S. R., Dinnon, K. H., Schäfer, A., Tse, L. V., Okuda, K., Hou, Y. J., West, A., Edwards, C. E., Sanders, W., Fritch, E. J., Gully, K. L., Scobey, T., Brown, A. J., Sheahan, T. P., Moorman, N. J., Boucher, R. C., Gralinski, L. E., Montgomery, S. A., & Baric, R. S. (2020). A mouse-adapted SARS-CoV-2 induces acute lung injury and mortality in standard laboratory mice. Cell, 183(4), 1070–1085.e12. https://doi.org/10.1016/J.CELL.2020.09.050
  • Liberis, E., Veličković, P., Sormanni, P., Vendruscolo, M., & Liò, P. (2018). Parapred: Antibody paratope prediction using convolutional and recurrent neural networks. Bioinformatics (Oxford, England), 34(17), 2944–2950. https://doi.org/10.1093/bioinformatics/bty305
  • Martis, E. A. F., & Coutinho, E. C. (2019). Free energy-based methods to understand drug resistance mutations. Challenges and Advances in Computational Chemistry and Physics, 27, 1–24. https://doi.org/10.1007/978-3-030-05282-9_1
  • McCallum, M., Czudnochowski, N., Rosen, L. E., Zepeda, S. K., Bowen, J. E., Walls, A. C., Hauser, K., Joshi, A., Stewart, C., Dillen, J. R., Powell, A. E., Croll, T. I., Nix, J., Virgin, H. W., Corti, D., Snell, G., & Veesler, D. (2022). Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement. Science, 375(6583), 864–868. https://doi.org/10.1126/science.abn8652
  • Mobley, D. L., & Gilson, M. K. (May 2017). Predicting binding free energies: Frontiers and benchmarks. Annual Review of Biophysics, 46, 531–558. https://doi.org/10.1146/ANNUREV-BIOPHYS-070816-033654
  • Mobley, D. L., & Klimovich, P. V. (2012). Perspective: Alchemical free energy calculations for drug discovery. The Journal of Chemical Physics, 137(23), 230901. https://doi.org/10.1063/1.4769292
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Meng, E. C., Couch, G. S., Croll, T. I., Morris, J. H., & Ferrin, T. E. (2021). UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Science, 30(1), 70–82. https://doi.org/10.1002/PRO.3943
  • Ranjan, P., Devi, C., Devar, K. A., Das, & P. Neha. (2022). The influence of new SARS-CoV-2 variant Omicron (B.1.1.529) on vaccine efficacy, its correlation to Delta variants: A computational approach. Microbial Pathogenesis, 169, 105619. https://doi.org/10.1016/J.MICPATH.2022.105619
  • Saito, A., Irie, T., Suzuki, R., Maemura, T., Nasser, H., Uriu, K., Kosugi, Y., Shirakawa, K., Sadamasu, K., Kimura, I., Ito, J., Wu, J., Iwatsuki-Horimoto, K., Ito, M., Yamayoshi, S., Loeber, S., Tsuda, M., Wang, L., Ozono, S., … Sato, K, Genotype to Phenotype Japan (G2P-Japan) Consortium. (2022). Enhanced fusogenicity and pathogenicity of SARS-CoV-2 Delta P681R mutation. Nature, 602(7896), 300–306. https://doi.org/10.1038/s41586-021-04266-9
  • Schritt, D., Li, S., Rozewicki, J., Katoh, K., Yamashita, K., Volkmuth, W., Cavet, G., & Standley, D. M. (2019). Repertoire builder: High-throughput structural modeling of B and T cell receptors. Molecular Systems Design & Engineering, 4(4), 761–768. https://doi.org/10.1039/C9ME00020H
  • Singh, N., & Li, W. (2020). Absolute binding free energy calculations for highly flexible protein MDM2 and its inhibitors. International Journal of Molecular Sciences, 21(13), 4765. https://doi.org/10.10.3390/IJMS21134765
  • Stansfeld, P. J., & Sansom, M. S. P. (2011). Molecular simulation approaches to membrane proteins. Structure (London, England: 1993), 19(11), 1562–1572. https://doi.org/10.1016/J.STR.2011.10.002
  • Starr, T. N., Greaney, A. J., Hilton, S. K., Ellis, D., Crawford, K. H. D., Dingens, A. S., Navarro, M. J., Bowen, J. E., Tortorici, M. A., Walls, A. C., King, N. P., Veesler, D., & Bloom, J. D. (2020). Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell, 182(5), 1295–1310.e20. https://doi.org/10.1016/J.CELL.2020.08.012
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics, 16(40), 22035–22045. https://doi.org/10.1039/C4CP03179B
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics, 16(31), 16719–16729. https://doi.org/10.10.1039/C4CP01388C
  • Walls, A. C., Tortorici, M. A., Snijder, J., Xiong, X., Bosch, B.-J., Rey, F. A., & Veesler, D. (2017). Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 114(42), 11157–11162. https://doi.org/10.1073/PNAS.1708727114
  • Wang, K., Jia, Z., Bao, L., Wang, L., Cao, L., Chi, H., Hu, Y., Li, Q., Zhou, Y., Jiang, Y., Zhu, Q., Deng, Y., Liu, P., Wang, N., Wang, L., Liu, M., Li, Y., Zhu, B., Fan, K., … Wang, X. (2022). Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants. Nature, 603(7903), 919–925. https://doi.org/10.1038/s41586-022-04466-x
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: hHomology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
  • Weng, G., Wang, E., Wang, Z., Liu, H., Zhu, F., Li, D., & Hou, T. (2019). HawkDock: A web server to predict and analyze the protein-protein complex based on computational docking and MM/GBSA. Nucleic Acids Research, 47(W1), W322–W330. https://doi.org/10.1093/NAR/GKZ397
  • Yuan, M., Liu, H., Wu, N. C., Lee, C.-C D., Zhu, X., Zhao, F., Huang, D., Yu, W., Hua, Y., Tien, H., Rogers, T. F., Landais, E., Sok, D., Jardine, J. G., Burton, D. R., & Wilson, I. A. (2020). Structural basis of a shared antibody response to SARS-CoV-2. Science (New York, N.Y.), 369(6507), 1119–1123. https://doi.org/10.1126/science.abd2321
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 webserver: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol., 428, 720–725.
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.