222
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Identification of potent histone deacetylase 2 (HDAC2) inhibitors through combined structure and ligand-based designs and molecular modelling approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4679-4698 | Received 01 Mar 2023, Accepted 01 Jun 2023, Published online: 12 Jun 2023

References

  • Abad-Zapatero, C., & Metz, J. T. (2005). Ligand efficiency indices as guideposts for drug discovery. Drug Discovery Today, 10(7), 464–469. https://doi.org/10.1016/S1359-6446(05)03386-6
  • Akhtar, M. W., Raingo, J., Nelson, E. D., Montgomery, R. L., Olson, E. N., Kavalali, E. T., & Monteggia, L. M. (2009). Histone deacetylases 1 and 2 form a developmental switch that controls excitatory synapse maturation and function. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(25), 8288–8297. https://doi.org/10.1523/JNEUROSCI.0097-09.2009
  • Baell, J. B., & Nissink, J. W. M. (2018). Seven year itch: Pan-assay interference compounds (PAINS) in 2017-utility and limitations. ACS Chemical Biology, 13(1), 36–44. https://doi.org/10.1021/acschembio.7b00903
  • Berridge, M. V., & Tan, A. S. (1993). Characterization of the cellular reduction of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Archives of Biochemistry and Biophysics, 303(2), 474–482. https://doi.org/10.1006/abbi.1993.1311
  • Bhagwati, S., & Siddiqi, M. I. (2020). Identification of potential soluble epoxide hydrolase (sEH) inhibitors by ligand-based pharmacophore model and biological evaluation. Journal of Biomolecular Structure & Dynamics, 38(16), 4956–4966. https://doi.org/10.1080/07391102.2019.1691659
  • Bodner, B. L., Jackman, L. M., & Morgan, R. S. (1980). NMR study of 1:1 complexes between divalent sulfur and aromatic compounds: A model for interactions in globular proteins. Biochemical and Biophysical Research Communications, 94(3), 807–813. https://doi.org/10.1016/0006-291x(80)91306-6
  • Bressi, J. C., Jennings, A. J., Skene, R., Wu, Y., Melkus, R., De Jong, R., O'Connell, S., Grimshaw, C. E., Navre, M., & Gangloff, A. R. (2010). Exploration of the HDAC2 foot pocket: Synthesis and SAR of substituted N-(2-aminophenyl) benzamides. Bioorganic & Medicinal Chemistry Letters, 20(10), 3142–3145. https://doi.org/10.1016/j.bmcl.2010.03.091
  • Brunmeir, R., Lagger, S., & Seiser, C. (2009). Histone deacetylase 1 and 2-controlled embryonic development and cell differentiation. The International Journal of Developmental Biology, 53(2–3), 275–289. https://doi.org/10.1387/ijdb.082649rb
  • Carrero, I., Gonzalo, M., Martin, B., Sanz-Anquela, J., Arevalo-Serrano, J., & Gonzalo-Ruiz, A. (2012). Oligomers of beta-amyloid protein (Aβ1-42) induce the activation of cyclooxygenase-2 in astrocytes via an interaction with interleukin-1beta, tumour necrosis factor-alpha, and a nuclear factor kappa-B mechanism in the rat brain. Experimental Neurology, 236(2), 215–227. https://doi.org/10.1016/j.expneurol.2012.05.004
  • Chen, X., Zhao, S., Wu, Y., Chen, Y., Lu, T., & Zhu, Y. (2016). Design, synthesis and biological evaluation of 2-amino-N-(2-aminophenyl) thiazole-5-carboxamide derivatives as novel Bcr-Abl and histone deacetylase dual inhibitors. RSC Advances, 6(105), 103178–103184. https://doi.org/10.1039/C6RA21271A
  • Choubey, S. K., & Jeyakanthan, J. (2018). Molecular dynamics and quantum chemistry-based approaches to identify isoform selective HDAC2 inhibitor – A novel target to prevent Alzheimer’s disease. Journal of Receptor and Signal Transduction Research, 38(3), 266–278. https://doi.org/10.1080/10799893.2018.1476541
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/srep42717
  • Daisy, P., Singh, S. K., Vijayalakshmi, P., Selvaraj, C., Rajalakshmi, M., & Suveena, S. (2011). A database for the predicted pharmacophoric features of medicinal compounds. Bioinformation, 6(4), 167–168. https://doi.org/10.6026/97320630006167
  • Di Micco, S., Chini, M. G., Terracciano, S., Bruno, I., Riccio, R., & Bifulco, G. (2013). Structural basis for the design and synthesis of selective HDAC inhibitors. Bioorganic & Medicinal Chemistry, 21(13), 3795–3807. https://doi.org/10.1016/j.bmc.2013.04.036
  • Dubey, H., Gulati, K., & Ray, A. (2018). Recent studies on cellular and molecular mechanisms in Alzheimer’s disease: Focus on epigenetic factors and histone deacetylase. Reviews in the Neurosciences, 29(3), 241–260. https://doi.org/10.1515/revneuro-2017-0049
  • Feng, T., & Barakat, K. (2018). Molecular dynamics simulation and prediction of druggable binding sites. In Computational drug discovery and design (pp. 87–103). Springer.
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Giustiniani, J., Sineus, M., Sardin, E., Dounane, O., Panchal, M., Sazdovitch, V., Duyckaerts, C., Chambraud, B., & Baulieu, E.-E. (2012). Decrease of the immunophilin FKBP52 accumulation in human brains of Alzheimer’s disease and FTDP-17. Journal of Alzheimer’s Disease: JAD, 29(2), 471–483. https://doi.org/10.3233/JAD-2011-111895
  • Gräff, J., Rei, D., Guan, J.-S., Wang, W.-Y., Seo, J., Hennig, K. M., Nieland, T. J. F., Fass, D. M., Kao, P. F., Kahn, M., Su, S. C., Samiei, A., Joseph, N., Haggarty, S. J., Delalle, I., & Tsai, L.-H. (2012). An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature, 483(7388), 222–226. https://doi.org/10.1038/nature10849
  • Guan, J.-S., Haggarty, S. J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T. J. F., Zhou, Y., Wang, X., Mazitschek, R., Bradner, J. E., DePinho, R. A., Jaenisch, R., & Tsai, L.-H. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature, 459(7243), 55–60. https://doi.org/10.1038/nature07925
  • Güner, O., & Henry, D. R. (2000). Metric for analyzing hit lists and pharmacophores. Pharmacophore Perception, Development, and Use in Drug Design, Molecules, 5(7), 195–213.
  • Haberland, M., Montgomery, R. L., & Olson, E. N. (2009). The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nature Reviews. Genetics, 10(1), 32–42. https://doi.org/10.1038/nrg2485
  • Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science (New York, N.Y.), 297(5580), 353–356. https://doi.org/10.1126/science.1072994
  • Heller, S. R., McNaught, A., Pletnev, I., Stein, S., & Tchekhovskoi, D. (2015). InChI, the IUPAC international chemical identifier. Journal of Cheminformatics, 7(1), 1–34. https://doi.org/10.1186/s13321-015-0068-4
  • Kaler, P., Sasazuki, T., Shirasawa, S., Augenlicht, L., & Klampfer, L. (2008). HDAC2 deficiency sensitizes colon cancer cells to TNFα-induced apoptosis through inhibition of NF-κB activity. Experimental Cell Research, 314(7), 1507–1518. https://doi.org/10.1016/j.yexcr.2008.01.010
  • Liu, K., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. Journal of Chemical Information and Modeling, 57(10), 2514–2522. https://doi.org/10.1021/acs.jcim.7b00412
  • Liu, D., Tang, H., Li, X.-Y., Deng, M.-F., Wei, N., Wang, X., Zhou, Y.-F., Wang, D.-Q., Fu, P., Wang, J.-Z., Hébert, S. S., Chen, J.-G., Lu, Y., & Zhu, L.-Q. (2017). Targeting the HDAC2/HNF-4A/miR-101b/AMPK pathway rescues tauopathy and dendritic abnormalities in Alzheimer’s disease. Molecular Therapy: The Journal of the American Society of Gene Therapy, 25(3), 752–764. https://doi.org/10.1016/j.ymthe.2017.01.018
  • Mahady, L., Nadeem, M., Malek‐Ahmadi, M., Chen, K., Perez, S. E., & Mufson, E. J. (2019). HDAC 2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer’s disease. Neuropathology and Applied Neurobiology, 45(4), 380–397. https://doi.org/10.1111/nan.12518
  • Methot, J. L., Chakravarty, P. K., Chenard, M., Close, J., Cruz, J. C., Dahlberg, W. K., Fleming, J., Hamblett, C. L., Hamill, J. E., Harrington, P., Harsch, A., Heidebrecht, R., Hughes, B., Jung, J., Kenific, C. M., Kral, A. M., Meinke, P. T., Middleton, R. E., Ozerova, N., … Miller, T. A. (2008). Exploration of the internal cavity of histone deacetylase (HDAC) with selective HDAC1/HDAC2 inhibitors (SHI-1: 2). Bioorganic & Medicinal Chemistry Letters, 18(3), 973–978. https://doi.org/10.1016/j.bmcl.2007.12.031
  • Min, S.-W., Cho, S.-H., Zhou, Y., Schroeder, S., Haroutunian, V., Seeley, W. W., Huang, E. J., Shen, Y., Masliah, E., Mukherjee, C., Meyers, D., Cole, P. A., Ott, M., & Gan, L. (2010). Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron, 67(6), 953–966. https://doi.org/10.1016/j.neuron.2010.08.044
  • Mustafa, M., Abd El-Hafeez, A. A., Abdelhamid, D., Katkar, G. D., Mostafa, Y. A., Ghosh, P., Hayallah, A. M., & Abuo-Rahma, G. E.-D A. (2021). A first-in-class anticancer dual HDAC2/FAK inhibitors bearing hydroxamates/benzamides capped by pyridinyl-1, 2, 4-triazoles. European Journal of Medicinal Chemistry, 222, 113569. https://doi.org/10.1016/j.ejmech.2021.113569
  • Nath, M., & Goswami, S. (2021). Toxicity detection in drug candidates using simplified molecular-input line-entry system. arXiv Preprint arXiv, 175(21), 1–4.
  • Omidkhah, N., Eisvand, F., Hadizadeh, F., Zarghi, A., & Ghodsi, R. (2022). Synthesis, cytotoxicity, pan‐HDAC inhibitory activity and docking study of N‐(2‐aminophenyl)‐2‐arylquinoline‐4‐and N‐(2‐aminophenyl)‐2‐arylbenzo [h] quinoline‐4‐carboxamides. ChemistrySelect, 7(29), e202201239. https://doi.org/10.1002/slct.202201239
  • Ooms, D., Palm, R., Leemans, V., & Destain, M.-F. (2010). A sorting optimization curve with quality and yield requirements. Pattern Recognition Letters, 31(9), 983–990. https://doi.org/10.1016/j.patrec.2009.12.015
  • Panza, F., Lozupone, M., Seripa, D., & Imbimbo, B. P. (2019). Amyloid‐β immunotherapy for alzheimer disease: Is it now a long shot? Annals of Neurology, 85(3), 303–315. https://doi.org/10.1002/ana.25410
  • Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols in Pharmacology, 49(1), 9–12. https://doi.org/10.1002/0471141755.ph0912s49
  • Roth, S. Y., Denu, J. M., & Allis, C. D. (2001). Histone acetyltransferases. Annual Review of Biochemistry, 70, 81–120. https://doi.org/10.1146/annurev.biochem.70.1.81
  • Sabnis, R. W. (2021). Novel HDAC1 and HDAC2 inhibitors for treating diseases (pp. 1532–1533). ACS Publications. https://doi.org/10.1021/acsmedchemlett.1c00488
  • Salminen, A., Kaarniranta, K., Haapasalo, A., Soininen, H., & Hiltunen, M. (2011). AMP‐activated protein kinase: A potential player in Alzheimer’s disease. Journal of Neurochemistry, 118(4), 460–474. https://doi.org/10.1111/j.1471-4159.2011.07331.x
  • Singh, R., Ganeshpurkar, A., Kumar, D., Kumar, D., Kumar, A., & Singh, S. K. (2020). Identifying potential GluN2B subunit containing N-methyl-D-aspartate receptor inhibitors: An integrative in silico and molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 38(9), 2533–2545. https://doi.org/10.1080/07391102.2019.1635530
  • Suzuki, T., Ando, T., Tsuchiya, K., Fukazawa, N., Saito, A., Mariko, Y., Yamashita, T., & Nakanishi, O. (1999). Synthesis and histone deacetylase inhibitory activity of new benzamide derivatives. Journal of Medicinal Chemistry, 42(15), 3001–3003. https://doi.org/10.1021/jm980565u
  • Tabachnick, B. G., Fidell, L. S., & Ullman, J. B. (2007). Using multivariate statistics. Pearson.
  • Taplick, J., Kurtev, V., Kroboth, K., Posch, M., Lechner, T., & Seiser, C. (2001). Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. Journal of Molecular Biology, 308(1), 27–38. https://doi.org/10.1006/jmbi.2001.4569
  • Tracy, T. E., Sohn, P. D., Minami, S. S., Wang, C., Min, S.-W., Li, Y., Zhou, Y., Le, D., Lo, I., Ponnusamy, R., Cong, X., Schilling, B., Ellerby, L. M., Huganir, R. L., & Gan, L. (2016). Acetylated tau obstructs KIBRA-mediated signaling in synaptic plasticity and promotes tauopathy-related memory loss. Neuron, 90(2), 245–260. https://doi.org/10.1016/j.neuron.2016.03.005
  • Vidal, M., & Gaber, R. F. (1991). RPD3 encodes a second factor required to achieve maximum positive and negative transcriptional states in Saccharomyces cerevisiae. Molecular and Cellular Biology, 11(12), 6317–6327. https://doi.org/10.1128/mcb.11.12.6317-6327.1991
  • Wagner, F. F., Weïwer, M., Steinbacher, S., Schomburg, A., Reinemer, P., Gale, J. P., Campbell, A. J., Fisher, S. L., Zhao, W.-N., Reis, S. A., Hennig, K. M., Thomas, M., Müller, P., Jefson, M. R., Fass, D. M., Haggarty, S. J., Zhang, Y.-L., & Holson, E. B. (2016). Kinetic and structural insights into the binding of histone deacetylase 1 and 2 (HDAC1, 2) inhibitors. Bioorganic & Medicinal Chemistry, 24(18), 4008–4015. https://doi.org/10.1016/j.bmc.2016.06.040
  • Wagner, F. F., Weїwer, M., Lewis, M. C., & Holson, E. B. (2013). Small molecule inhibitors of zinc-dependent histone deacetylases. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 10(4), 589–604. https://doi.org/10.1007/s13311-013-0226-1
  • Wagner, F. F., Zhang, Y.-L., Fass, D. M., Joseph, N., Gale, J. P., Weïwer, M., McCarren, P., Fisher, S. L., Kaya, T., Zhao, W.-N., Reis, S. A., Hennig, K. M., Thomas, M., Lemercier, B. C., Lewis, M. C., Guan, J. S., Moyer, M. P., Scolnick, E., Haggarty, S. J., Tsai, L.-H., & Holson, E. B. (2015). Kinetically selective inhibitors of histone deacetylase 2 (HDAC2) as cognition enhancers. Chemical Science, 6(1), 804–815. https://doi.org/10.1039/C4SC02130D
  • Yamakawa, H., Cheng, J., Penney, J., Gao, F., Rueda, R., Wang, J., Yamakawa, S., Kritskiy, O., Gjoneska, E., & Tsai, L.-H. (2017). The transcription factor Sp3 cooperates with HDAC2 to regulate synaptic function and plasticity in neurons. Cell Reports, 20(6), 1319–1334. https://doi.org/10.1016/j.celrep.2017.07.044
  • Yao, P. J., Zhu, M., Pyun, E. I., Brooks, A. I., Therianos, S., Meyers, V. E., & Coleman, P. D. (2003). Defects in expression of genes related to synaptic vesicle traffickingin frontal cortex of Alzheimer’s disease. Neurobiology of Disease, 12(2), 97–109. https://doi.org/10.1016/s0969-9961(02)00009-8
  • You, C., Zhang, H., Sakharkar, A. J., Teppen, T., & Pandey, S. C. (2014). Reversal of deficits in dendritic spines, BDNF and Arc expression in the amygdala during alcohol dependence by HDAC inhibitor treatment. The International Journal of Neuropsychopharmacology, 17(2), 313–322. https://doi.org/10.1017/S1461145713001144
  • Zhang, Y., Zheng, G., Fu, T., Hong, J., Li, F., Yao, X., Xue, W., & Zhu, F. (2020). The binding mode of vilazodone in the human serotonin transporter elucidated by ligand docking and molecular dynamics simulations. Physical Chemistry Chemical Physics: PCCP, 22(9), 5132–5144. https://doi.org/10.1039/c9cp05764a
  • Zhou, N., Moradei, O., Raeppel, S., Leit, S., Frechette, S., Gaudette, F., Paquin, I., Bernstein, N., Bouchain, G., Vaisburg, A., Jin, Z., Gillespie, J., Wang, J., Fournel, M., Yan, P. T., Trachy-Bourget, M.-C., Kalita, A., Lu, A., Rahil, J., … Delorme, D. (2008). Discovery of N-(2-aminophenyl)-4-[(4-pyridin-3-ylpyrimidin-2-ylamino) methyl] benzamide (MGCD0103), an orally active histone deacetylase inhibitor. Journal of Medicinal Chemistry, 51(14), 4072–4075. https://doi.org/10.1021/jm800251w

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.