354
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Anti-aging activity of Syn-Ake peptide by in silico approaches and in vitro tests

ORCID Icon, ORCID Icon & ORCID Icon
Pages 5015-5029 | Received 17 Feb 2023, Accepted 06 Jun 2023, Published online: 22 Jun 2023

References

  • 10993‐5, I. (2009). Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity. IOS.
  • Aluc, C. C., et al. (2022). Glycyrrhizic acid poly(d,l-lactide-co-glycolide) nanoparticles: Anti-aging cosmeceutical formulation for topical applications. PeerJ. 10, e14139.
  • Amakye, W. K., Hou, C., Xie, L., Lin, X., Gou, N., Yuan, E., & Ren, J. (2021). Bioactive anti-aging agents and the identification of new anti-oxidant soybean peptides. Food Bioscience, 42, 101194. https://doi.org/10.1016/j.fbio.2021.101194
  • Amelian, A., Wasilewska, K., Megias, D., & Winnicka, K. (2017). Application of standard cell cultures and 3D in vitro tissue models as an effective tool in drug design and development. Pharmacological Reports : PR, 69(5), 861–870. https://doi.org/10.1016/j.pharep.2017.03.014
  • Ames, B. N., Lee, F. D., & Durston, W. E. (1973). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proceedings of the National Academy of Sciences of the United States of America, 70(3), 782–786. https://doi.org/10.1073/pnas.70.3.782
  • Ames, B. N., McCann, J., & Yamasaki, E. (1975). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Research (Netherlands), 31, 347–364.
  • Bellavita, R., Maione, A., Merlino, F., Siciliano, A., Dardano, P., De Stefano, L., Galdiero, S., Galdiero, E., Grieco, P., & Falanga, A. (2022). Antifungal and antibiofilm activity of cyclic temporin L peptide analogues against Albicans and Non-Albicans Candida species. Pharmaceutics, 14(2), 454. https://doi.org/10.3390/pharmaceutics14020454
  • Bhardwaj, V., Namkoong, J., Tartar, O., Diaz, I., Mao, J., & Wu, J. (2022). In vitro and ex vivo mechanistic understanding and clinical evidence of a novel anti-wrinkle technology in single-arm, monocentric, open-label observational studies. Cosmetics, 9(4), 80. https://doi.org/10.3390/cosmetics9040080
  • Bielach-Bazyluk, A., Zbroch, E., Mysliwiec, H., Rydzewska-Rosolowska, A., Kakareko, K., Flisiak, I., & Hryszko, T. (2021). Sirtuin 1 and skin: İmplications in intrinsic and extrinsic aging—a systematic review. Cells, 10(4), 813. https://doi.org/10.3390/cells10040813
  • Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository—New features and functionality. Nucleic Acids Research, 45(D1), D313–D319. https://doi.org/10.1093/nar/gkw1132
  • Bowers, K. J., et al. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters [Paper presentation]. Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. https://doi.org/10.1145/1188455.1188544
  • Campiche, R., Pascucci, F., Jiang, L., Vergne, T., Cherel, M., Gougeon, S., Préstat-Marquis, E., François, G., Laurent, G., & Gempeler, M. (2021). Facial expression wrinkles and their relaxation by a synthetic peptide. International Journal of Peptide Research and Therapeutics, 27(2), 1009–1017. https://doi.org/10.1007/s10989-020-10146-z
  • Chen, C.-P., Chen, C.-C., Huang, C.-W., & Chang, Y.-C. (2018). Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules, 23(4), 911. https://doi.org/10.3390/molecules23040911
  • Chen, H., Wang, S., Zhou, A., Miao, J., Liu, J., & Benjakul, S. (2020a). A novel antioxidant peptide purified from defatted round scad (Decapterus maruadsi) protein hydrolysate extends lifespan in Caenorhabditis elegans. Journal of Functional Foods, 68, 103907. https://doi.org/10.1016/j.jff.2020.103907
  • Chen, S., Yang, Q., Chen, X., Tian, Y., Liu, Z., & Wang, S. (2020b). Bioactive peptides derived from crimson snapper and in vivo anti-aging effects on fat diet-induced high fat Drosophila melanogaster. Food & Function, 11(1), 524–533. https://doi.org/10.1039/c9fo01414d
  • Cui, N., Hu, M., & Khalil, R. A. (2017). Biochemical and biological attributes of matrix metalloproteinases. Progress in Molecular Biology and Translational Science, 147, 1–73.
  • de Lima Cherubim, D. J., Buzanello Martins, C. V., Oliveira Fariña, L., & da Silva de Lucca, R. A. (2020). Polyphenols as natural antioxidants in cosmetics applications. Journal of Cosmetic Dermatology, 19(1), 33–37. https://doi.org/10.1111/jocd.13093
  • Dragomirescu, A., Andoni, M., Ionescu, D., & Andrei, F. (2014). The efficiency and safety of leuphasyl—A botox-like peptide. Cosmetics, 1(2), 75–81. https://doi.org/10.3390/cosmetics1020075
  • DSM. (2021). SYN®-AKE. Available from: https://www.dsm.com/personal-care/en_US/products/skin-bioactives/syn-ake.html
  • Elahi, M. G., Hekmati, M., Esmaeili, D., Ziarati, P., & Yousefi, M. (2022). Evaluation and efficacy modified carvacrol and anti-cancer peptide against cell line gastric AGS. International Journal of Peptide Research and Therapeutics, 28(4), 1–13. https://doi.org/10.1007/s10989-022-10426-w
  • Errante, F., Ledwoń, P., Latajka, R., Rovero, P., & Papini, A. M. (2020). Cosmeceutical peptides in the framework of sustainable wellness economy. Frontiers in Chemistry, 8, 1–8. https://doi.org/10.3389/fchem.2020.572923
  • Fitton, J., Dell’Acqua, G., Gardiner, V.-A., Karpiniec, S., Stringer, D., & Davis, E. (2015). Topical benefits of two fucoidan-rich extracts from marine macroalgae. Cosmetics, 2(2), 66–81. https://doi.org/10.3390/cosmetics2020066
  • Freitas-Rodriguez, S., Folgueras, A. R., & Lopez-Otin, C. (2017). The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochimica Et Biophysica Acta. Molecular Cell Research, 1864(11 Pt A), 2015–2025. https://doi.org/10.1016/j.bbamcr.2017.05.007
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Fussell, J. C., & Kelly, F. J. (2020). Oxidative contribution of air pollution to extrinsic skin ageing. Free Radical Biology & Medicine, 151, 111–122. https://doi.org/10.1016/j.freeradbiomed.2019.11.038
  • Gatehouse, D., et al. (1990). Bacterial mutation assays. Basic Mutagenicity Tests: UKEMS Part, 1, 13–61.
  • Gorouhi, F., & Maibach, H. (2009). Role of topical peptides in preventing or treating aged skin. International Journal of Cosmetic Science, 31(5), 327–345. https://doi.org/10.1111/j.1468-2494.2009.00490.x
  • Grams, F., Crimmin, M., Hinnes, L., Huxley, P., Pieper, M., Tschesche, H., & Bode, W. (1995). Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry, 34(43), 14012–14020. https://doi.org/10.1021/bi00043a007
  • Gu, Y., Han, J., Jiang, C., & Zhang, Y. (2020). Biomarkers, oxidative stress and autophagy in skin aging. Ageing Research Reviews, 59, 101036. https://doi.org/10.1016/j.arr.2020.101036
  • Ha, Y., Kim, Y., Choi, J., Hwang, I., Ko, J.-Y., Jeon, H. K., & Kim, Y.-J. (2021). Evaluation of cytotoxicity, genotoxicity, and zebrafish embryo toxicity of mixtures containing Hyssopus officinalis, Morus alba, Engraulis japonicus, and 27 other extracts for cosmetic safety assessment. Molecular & Cellular Toxicology, 17(2), 221–232. https://doi.org/10.1007/s13273-021-00128-7
  • Halgren, T. A., Murphy, R. B., Friesner, R. A., Beard, H. S., Frye, L. L., Pollard, W. T., & Banks, J. L. (2004). Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. Journal of Medicinal Chemistry, 47(7), 1750–1759. https://doi.org/10.1021/jm030644s
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Harman, D. (2002). Aging: A theory based on free radical and radiation chemistry. Science of Aging Knowledge Environment, 2002(37), cp14–cp14. https://doi.org/10.1126/sageke.2002.37.cp14
  • Information, N.C.f.B. (2022). PubChem Compound Summary for CID 71465152, Dipeptide diaminobutyroyl benzylamide diacetate. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Dipeptide-diaminobutyroyl-benzylamide-diacetate. Accessed 19 July 2022.
  • Jeong, S., Yoon, S., Kim, S., Jung, J., Kor, M., Shin, K., Lim, C., Han, H. S., Lee, H., Park, K.-Y., Kim, J., Chung, H. J., & Kim, H. J. (2019). Anti-wrinkle benefits of peptides complex stimulating skin basement membrane proteins expression. International Journal of Molecular Sciences, 21(1), 73. https://doi.org/10.3390/ijms21010073
  • Kim, D., Soundrarajan, N., Lee, J., Cho, H-s., Choi, M., Cha, S.-Y., Ahn, B., Jeon, H., Le, M. T., Song, H., Kim, J.-H., & Park, C. (2017). Genomewide analysis of the antimicrobial peptides in Python bivittatus and characterization of cathelicidins with potent antimicrobial activity and low cytotoxicity. Antimicrobial Agents and Chemotherapy, 61(9), e00530-17. https://doi.org/10.1128/AAC.00530-17
  • Lahmann, C., Bergemann, J., Harrison, G., & Young, A. R. (2001). Matrix metalloproteinase-1 and skin ageing in smokers. Lancet (London, England), 357(9260), 935–936. https://doi.org/10.1016/S0140-6736(00)04220-3
  • Lee, H., Kim, K., Oh, C., Park, C.-H., Aliya, S., Kim, H.-S., Bajpai, V. K., & Huh, Y. S. (2021a). Antioxidant and anti-aging potential of a peptide formulation (Gal 2–Pep) conjugated with gallic acid. RSC Advances, 11(47), 29407–29415. https://doi.org/10.1039/d1ra03421a
  • Lee, H., Park, H.-Y., & Jeong, T.-S. (2021b). Pheophorbide a derivatives exert antiwrinkle effects on UVB-induced skin aging in human fibroblasts. Life, 11(2), 147. https://doi.org/10.3390/life11020147
  • Li, X., Zhang, Y., Li, H., & Zhao, Y. (2017). Modeling of the hERG K + channel blockage using online chemical database and modeling environment (OCHEM). Molecular Informatics, 36(12), 1700074. https://doi.org/10.1002/minf.201700074
  • Lim, S. H., Sun, Y., Thiruvallur Madanagopal, T., Rosa, V., & Kang, L. (2018). Enhanced skin permeation of anti-wrinkle peptides via molecular modification. Scientific Reports, 8(1), 1–11. p. https://doi.org/10.1038/s41598-017-18454-z
  • Lintner, K. (2022). Peptides and Proteins. Cosmetic Dermatology: Products and Procedures, 388–400. John Wiley & Sons Ltd. https://doi.org/10.1002/9781119676881
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, M., Chen, S., Zhang, Z., Li, H., Sun, G., Yin, N., & Wen, J. (2022). Anti-ageing peptides and proteins for topical applications: A review. Pharmaceutical Development and Technology, 27(1), 108–125. https://doi.org/10.1080/10837450.2021.2023569
  • Lovejoy, B., et al. (1999). Crystal structures of MMP-1 and-13 reveal the structural basis for selectivity of collagenase inhibitors. Nature Structural Biology, 6(3), 217–221.
  • Lu, J., Guo, Y., Muhmood, A., Zeng, B., Qiu, Y., Wang, P., & Ren, L. (2022). Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes. Scientific Reports, 12(1), 1–10. https://doi.org/10.1038/s41598-022-06668-9
  • Lupo, M. P., & Cole, A. L. (2007). Cosmeceutical peptides. Dermatologic Therapy, 20(5), 343–349. https://doi.org/10.1111/j.1529-8019.2007.00148.x
  • Ma, Y., Li, R., Dong, Y., You, C., Huang, S., Li, X., Wang, F., & Zhang, Y. (2021). tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. International Journal of Nanomedicine, 16, 789–802. https://doi.org/10.2147/IJN.S289005
  • Martyna, G. J., Klein, M. L., & Tuckerman, M. (1992). Nosé–Hoover chains: The canonical ensemble via continuous dynamics. The Journal of Chemical Physics, 97(4), 2635–2643. https://doi.org/10.1063/1.463940
  • Martyna, G. J., Tobias, D. J., & Klein, M. L. (1994). Constant pressure molecular dynamics algorithms. The Journal of Chemical Physics, 101(5), 4177–4189. https://doi.org/10.1063/1.467468
  • Meerloo, J. V., Kaspers, G. J., & Cloos, J. (2011). Cell sensitivity assays: The MTT assay. İn Cancer cell culture. Springer. p. 237–245.
  • Mollica, A., Feliciani, F., Stefanucci, A., Costante, R., Lucente, G., Pinnen, F., Notaristefano, D., & Spisani, S. (2012). Synthesis and biological evaluation of new active For‐Met‐Leu‐Phe‐OMe analogues containing para‐substituted Phe residues. Journal of Peptide Science : An Official Publication of the European Peptide Society, 18(6), 418–426. https://doi.org/10.1002/psc.2414
  • Mortazavi, S. M., & Moghimi, H. R. (2022). Skin permeability, a dismissed necessity for anti‐wrinkle peptide performance. International Journal of Cosmetic Science, 44(2), 232–248. https://doi.org/10.1111/ics.12770
  • Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 455(1-2), 29–60. https://doi.org/10.1016/s0027-5107(00)00064-6
  • Narenji, H., Teymournejad, O., Rezaee, M. A., Taghizadeh, S., Mehramuz, B., Aghazadeh, M., Asgharzadeh, M., Madhi, M., Gholizadeh, P., Ganbarov, K., Yousefi, M., Pakravan, A., Dal, T., Ahmadi, R., & Samadi Kafil, H. (2020). Antisense peptide nucleic acids againstftsZ andefaA genes inhibit growth and biofilm formation of Enterococcus faecalis. Microbial Pathogenesis, 139, 103907. https://doi.org/10.1016/j.micpath.2019.103907
  • Neidle, S. (2012). Design principles for quadruplex-binding small molecules. In Stephen Neidle (Ed.), Therapeutic applications of quadruplex nucleic acids (pp. 151–174). Academic Press
  • Ohata, M., Uchida, S., Zhou, L., & Arihara, K. (2016). Antioxidant activity of fermented meat sauce and isolation of an associated antioxidant peptide. Food Chemistry, 194, 1034–1039. https://doi.org/10.1016/j.foodchem.2015.08.089
  • Ohno, K., Mori, K., Orita, M., & Takeuchi, M. (2011). Computational insights into binding of bisphosphates to farnesyl pyrophosphate synthase. Current Medicinal Chemistry, 18(2), 220–233. https://doi.org/10.2174/092986711794088335
  • Olsson, M. H. M., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Planz, V., Lehr, C.-M., & Windbergs, M. (2016). In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. Journal of Controlled Release : official Journal of the Controlled Release Society, 242, 89–104. https://doi.org/10.1016/j.jconrel.2016.09.002
  • Potts, R. O., & Guy, R. H. (1995). A predictive algorithm for skin permeability: The effects of molecular size and hydrogen bond activity. Pharmaceutical Research, 12(11), 1628–1633. https://doi.org/10.1023/a:1016236932339
  • Qi, X., Zhou, C., Li, P., Xu, W., Cao, Y., Ling, H., Ning Chen, W., Ming Li, C., Xu, R., Lamrani, M., Mu, Y., Leong, S. S. J., Wook Chang, M., & Chan-Park, M. B. (2010). Novel short antibacterial and antifungal peptides with low cytotoxicity: Efficacy and action mechanisms. Biochemical and Biophysical Research Communications, 398(3), 594–600. https://doi.org/10.1016/j.bbrc.2010.06.131
  • Rahnamaeian, M., & Vilcinskas, A. (2015). Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Applied Microbiology and Biotechnology, 99(21), 8847–8855. https://doi.org/10.1007/s00253-015-6926-1
  • Release, S. (2017). 3: Desmond molecular dynamics system, DE Shaw research, New York, NY, 2017. Maestro-Desmond Interoperability Tools, Schrödinger.
  • Ruiz, M. A., Clares, B., Morales, M. E., Cazalla, S., & Gallardo, V. (2007). Preparation and stability of cosmetic formulations with an anti-aging peptide. Journal of Cosmetic Science, 58(2), 157–171.
  • Ryu, H. S., et al. (2018). Inductive effects of the cold receptor TRPM8 expression in ganoderma lucidum extracts and ergosterol. Journal of the Society of Cosmetic Scientists of Korea, 44(1), 15–21.
  • Ryu, T.-K., Roh, E., Shin, H.-S., & Kim, J.-E. (2022). Inhibitory effect of lotusine on solar UV-ınduced matrix metalloproteinase-1 expression. Plants, 11(6), 773. https://doi.org/10.3390/plants11060773
  • Sastry, G. M., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Schagen, S. K. (2017). Topical peptide treatments with effective anti-aging results. Cosmetics, 4(2), 16. https://doi.org/10.3390/cosmetics4020016
  • Schrödinger. (2020). Schrödinger Release 2020-1: QikProp. Schrödinger, LLC.
  • Serravallo, M., Jagdeo, J., Glick, S. A., Siegel, D. M., & Brody, N. I. (2013). Sirtuins in dermatology: Applications for future research and therapeutics. Archives of Dermatological Research, 305(4), 269–282. https://doi.org/10.1007/s00403-013-1320-2
  • Sharma, S., Pradhan, R., Manickavasagan, A., Thimmanagari, M., Saha, D., Singh, S. S., & Dutta, A. (2022). Production of antioxidative protein hydrolysates from corn distillers solubles: Process optimization, antioxidant activity evaluation, and peptide analysis. Industrial Crops and Products, 184, 115107. https://doi.org/10.1016/j.indcrop.2022.115107
  • Shi, V. Y., Burney, W., Shakhbazova, A., Pan, A., Hassoun, L. A., Sharma, S., & Sivamani, R. K. (2022). The effect of synthetic acetylhexapeptide‐8 (AH8) on sebaceous function. International Journal of Cosmetic Science, 44(4), 477–483. https://doi.org/10.1111/ics.12795
  • Søndergaard, C. R., Olsson, M. H. M., Rostkowski, M., & Jensen, J. H. (2011). Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values. Journal of Chemical Theory and Computation, 7(7), 2284–2295. https://doi.org/10.1021/ct200133y
  • Spicer, T. P., Jiang, J., Taylor, A. B., Choi, J. Y., Hart, P. J., Roush, W. R., Fields, G. B., Hodder, P. S., & Minond, D. (2014). Characterization of selective exosite-binding inhibitors of matrix metalloproteinase 13 that prevent articular cartilage degradation in vitro. Journal of Medicinal Chemistry, 57(22), 9598–9611. https://doi.org/10.1021/jm501284e
  • Stefanucci, A., Marrone, A., & Agamennone, M. (2015). Investigation of the N-BP binding at FPPS by combined computational approaches. Medicinal Chemistry (Shariqah (United Arab Emirates)), 11(5), 417–431. https://doi.org/10.2174/1573406410666141226132630
  • Sun, D., Zhao, T., Wang, T., Wu, M., & Zhang, Z. (2020). Genotoxicity assessment of triclocarban by comet and micronucleus assays and Ames test. Environmental Science and Pollution Research İnternational, 27(7), 7430–7438. https://doi.org/10.1007/s11356-019-07351-9
  • Trookman, N. S., et al. (2009). Immediate and long-term clinical benefits of a topical treatment for facial lines and wrinkles. The Journal of Clinical and Aesthetic Dermatology, 2, 3): P. 38. (
  • Tsoumpra, M. K., Muniz, J. R., Barnett, B. L., Kwaasi, A. A., Pilka, E. S., Kavanagh, K. L., Evdokimov, A., Walter, R. L., Von Delft, F., Ebetino, F. H., Oppermann, U., Russell, R. G. G., & Dunford, J. E. (2015). The inhibition of human farnesyl pyrophosphate synthase by nitrogen-containing bisphosphonates. Elucidating the role of active site threonine 201 and tyrosine 204 residues using enzyme mutants. Bone, 81, 478–486. https://doi.org/10.1016/j.bone.2015.08.020
  • Wang, W.-Q., Duan, H.-X., Pei, Z.-T., Xu, R.-R., Qin, Z.-T., Zhu, G.-C., & Sun, L.-W. (2018). Evaluation by the Ames assay of the mutagenicity of UV filters using benzophenone and benzophenone-1. International Journal of Environmental Research and Public Health, 15(9), 1907. https://doi.org/10.3390/ijerph15091907
  • Wang, Y., Sun, Y., Wang, X., Wang, Y., Liao, L., Zhang, Y., Fang, B., & Fu, Y. (2022). Novel antioxidant peptides from Yak bones collagen enhanced the capacities of antiaging and antioxidant in Caenorhabditis elegans. Journal of Functional Foods, 89, 104933. https://doi.org/10.1016/j.jff.2022.104933
  • Wei, K., Guo, C., Zhu, J., Wei, Y., Wu, M., Huang, X., Zhang, M., Li, J., Wang, X., Wang, Y., & Wei, X. (2022). The whitening, moisturizing, anti-aging activities, and skincare evaluation of selenium-enriched mung bean fermentation broth. Frontiers in Nutrition, 9, 837168. https://doi.org/10.3389/fnut.2022.837168
  • Xu, W., Hong, Y., Song, A., & Hao, J. (2020). Peptide-assembled hydrogels for pH-controllable drug release. Colloids and Surfaces. B, Biointerfaces, 185, 110567. https://doi.org/10.1016/j.colsurfb.2019.110567
  • Yaghoubzadeh, Z., Peyravii Ghadikolaii, F., Kaboosi, H., Safari, R., & Fattahi, E. (2020). Antioxidant activity and anticancer effect of bioactive peptides from rainbow trout (Oncorhynchus mykiss) skin hydrolysate. International Journal of Peptide Research and Therapeutics, 26(1), 625–632. https://doi.org/10.1007/s10989-019-09869-5
  • Zhang, L., & Falla, T. J. (2009). Host defense peptides for use as potential therapeutics. Current Opinion in İnvestigational Drugs (London, England: 2000), 10(2), 164–171.
  • Zhao, X., Allison, D., Condon, B., Zhang, F., Gheyi, T., Zhang, A., Ashok, S., Russell, M., MacEwan, I., Qian, Y., Jamison, J. A., & Luz, J. G. (2013). The 2.5 Å crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. Journal of Medicinal Chemistry, 56(3), 963–969. https://doi.org/10.1021/jm301431y
  • Ziemlewska, A., Zagórska-Dziok, M., & Nizioł-Łukaszewska, Z. (2021). Assessment of cytotoxicity and antioxidant properties of berry leaves as by-products with potential application in cosmetic and pharmaceutical products. Scientific Reports, 11(1), 3240. https://doi.org/10.1038/s41598-021-82207-2
  • Zonari, A., Brace, L. E., Alencar-Silva, T., Porto, W. F., Foyt, D., Guiang, M., Cruz, E. A. O., Franco, O. L., Oliveira, C. R., Boroni, M., & Carvalho, J. L. (2022). In vitro and in vivo toxicity assessment of the senotherapeutic Peptide 14. Toxicology Reports, 9, 1632–1638. https://doi.org/10.1016/j.toxrep.2022.07.018

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.