267
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Proanthocyanidin B2 derived metabolites may be ligands for bile acid receptors S1PR2, PXR and CAR: an in silico approach

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 4249-4262 | Received 14 Mar 2023, Accepted 24 May 2023, Published online: 20 Jun 2023

References

  • Anhê, F. F., Nachbar, R. T., Varin, T. V., Trottier, J., Dudonné, S., Le Barz, M., Feutry, P., Pilon, G., Barbier, O., Desjardins, Y., Roy, D., & Marette, A. (2019). Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut, 68(3), 453–464. https://doi.org/10.1136/gutjnl-2017-315565
  • Avior, Y., Bomze, D., Ramon, O., & Nahmias, Y. (2013). Flavonoids as dietary regulators of nuclear receptor activity. Food & Function, 4(6), 831–844. https://doi.org/10.1039/c3fo60063g
  • Bartik, L., Whitfield, G. K., Kaczmarska, M., Lowmiller, C. L., Moffet, E. W., Furmick, J. K., Hernandez, Z., Haussler, C. A., Haussler, M. R., & Jurutka, P. W. (2010). Curcumin: A novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention. The Journal of Nutritional Biochemistry, 21(12), 1153–1161. https://doi.org/10.1016/j.jnutbio.2009.09.012
  • Callender, C., Attaye, I., & Nieuwdorp, M. (2022). The interaction between the gut microbiome and bile acids in cardiometabolic diseases. Metabolites, 12(1), 65. https://doi.org/10.3390/metabo12010065
  • Chambers, K. F., Day, P. E., Aboufarrag, H. T., & Kroon, P. A. (2019). Polyphenol effects on cholesterol metabolism via bile acid biosynthesis, CYP7A1: A review. Nutrients, 11(11), 2588. https://doi.org/10.3390/nu11112588
  • Chávez-Talavera, O., Haas, J., Grzych, G., Tailleux, A., & Staels, B. (2019). Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: What do the human studies tell? Current Opinion in Lipidology, 30(3), 244–254. https://doi.org/10.1097/MOL.0000000000000597
  • Chen, S., Jiang, J., Chao, G., Hong, X., Cao, H., & Zhang, S. (2021). Pure total flavonoids from citrus protect against nonsteroidal anti-inflammatory drug-induced small intestine injury by promoting autophagy in vivo and in vitro. Frontiers in Pharmacology, 12, 622744. https://doi.org/10.3389/fphar.2021.622744
  • Chen, T., Huang, Z., Liu, R., Yang, J., Hylemon, P. B., & Zhou, H. (2017). Sphingosine-1 phosphate promotes intestinal epithelial cell proliferation via S1PR2. Frontiers in Bioscience (Landmark Edition), 22(4), 596–608. https://doi.org/10.2741/4505
  • Chen, W., Xiang, H., Chen, R., Yang, J., Yang, X., Zhou, J., Liu, H., Zhao, S., Xiao, J., Chen, P., Chen, A. F., Chen, S., & Lu, H. (2019). S1PR2 antagonist ameliorate high glucose-induced fission and dysfunction of mitochondria in HRGECs via regulating ROCK1. BMC Nephrology, 20(1), 135. https://doi.org/10.1186/s12882-019-1323-0
  • Cheng, K., & Raufman, J.-P. (2005). Bile acid-induced proliferation of a human colon cancer cell line is mediated by transactivation of epidermal growth factor receptors. Biochemical Pharmacology, 70(7), 1035–1047. https://doi.org/10.1016/j.bcp.2005.07.023
  • Cherian, M. T., Lin, W., Wu, J., & Chen, T. (2015). CINPA1 is an inhibitor of constitutive androstane receptor that does not activate pregnane X receptor. Molecular Pharmacology, 87(5), 878–889. https://doi.org/10.1124/mol.115.097782
  • Chiang, J. Y. L., Pathak, P., Liu, H., Donepudi, A., Ferrell, J., & Boehme, S. (2017). Intestinal farnesoid X receptor and Takeda G protein couple receptor 5 signaling in metabolic regulation. Digestive Diseases (Basel, Switzerland), 35(3), 241–245. https://doi.org/10.1159/000450981
  • Claudel, T., Staels, B., & Kuipers, F. (2005). The farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(10), 2020–2030. https://doi.org/10.1161/01.ATV.0000178994.21828.a7
  • Dong, H., Lin, W., Wu, J., & Chen, T. (2010). Flavonoids activate pregnane x receptor-mediated CYP3A4 gene expression by inhibiting cyclin-dependent kinases in HepG2 liver carcinoma cells. BMC Biochemistry, 11(1), 23. https://doi.org/10.1186/1471-2091-11-23
  • Fiorucci, S., Biagioli, M., Zampella, A., & Distrutti, E. (2018). Bile acids activated receptors regulate innate immunity. Frontiers in Immunology, 9, 1853. https://doi.org/10.3389/fimmu.2018.01853
  • Gao, J., & Xie, W. (2012). Targeting xenobiotic receptors PXR and CAR for metabolic diseases. Trends in Pharmacological Sciences, 33(10), 552–558. https://doi.org/10.1016/j.tips.2012.07.003
  • Gottlieb, A., & Canbay, A. (2019). Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression. Cells, 8(11), 1358. https://doi.org/10.3390/cells8111358
  • Guo, C., Chen, W.-D., & Wang, Y.-D. (2016). TGR5, not only a metabolic regulator. Frontiers in Physiology, 7, 646. https://doi.org/10.3389/fphys.2016.00646
  • Hoang, S. H. (2023). Fibroblast growth factor 5 (FGF5) and its missense mutant FGF5-H174 underlying trichomegaly: A molecular dynamics simulation investigation. Journal of Biomolecular Structure and Dynamics, 11, 1–11. https://doi.org/10.1080/07391102.2023.2188953
  • Jurutka, P. W., Bartik, L., Whitfield, G. K., Mathern, D., R., Barthel, T. K., Gurevich, M., Hsieh, J.-C., Kaczmarska, M., Haussler, C. A., & Haussler, M. R. (2007). Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands. Journal of Bone and Mineral Research, 22(S2), V2–V10. https://doi.org/10.1359/jbmr.07s216
  • Keitel, V., Reinehr, R., Gatsios, P., Rupprecht, C., Görg, B., Selbach, O., Häussinger, D., & Kubitz, R. (2007). The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology (Baltimore, Md.), 45(3), 695–704. https://doi.org/10.1002/hep.21458
  • Kuipers, F., Stroeve, J. H. M., Caron, S., & Staels, B. (2007). Bile acids, farnesoid X receptor, atherosclerosis and metabolic control. Current Opinion in Lipidology, 18(3), 289–297. https://doi.org/10.1097/MOL.0b013e3281338d08
  • Lacroix, S., Klicic Badoux, J., Scott-Boyer, M.-P., Parolo, S., Matone, A., Priami, C., Morine, M. J., Kaput, J., & Moco, S. (2018). A computationally driven analysis of the polyphenol-protein interactome. Scientific Reports, 8(1), 2232. https://doi.org/10.1038/s41598-018-20625-5
  • Land, H., & Humble, M. S. (2018). YASARA: A tool to obtain structural guidance in biocatalytic investigations. In Protein engineering (pp. 43–67). Springer.
  • Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191. https://doi.org/10.1152/physrev.00010.2008
  • Lehmann, J. M., McKee, D. D., Watson, M. A., Willson, T. M., Moore, J. T., & Kliewer, S. A. (1998). The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. The Journal of Clinical Investigation, 102(5), 1016–1023. https://doi.org/10.1172/JCI3703
  • Li, D., Cui, Y., Wang, X., Liu, F., & Li, X. (2021). Apple polyphenol extract improves high-fat diet-induced hepatic steatosis by regulating bile acid synthesis and gut microbiota in C57BL/6 male mice. Journal of Agricultural and Food Chemistry, 69(24), 6829–6841. https://doi.org/10.1021/acs.jafc.1c02532
  • Li, T., & Chiang, J. Y. L. (2005). Mechanism of rifampicin and pregnane X receptor inhibition of human cholesterol 7α-hydroxylase gene transcription. American Journal of Physiology. Gastrointestinal and Liver Physiology, 288(1), G74–G84. https://doi.org/10.1152/ajpgi.00258.2004
  • Li, T., & Chiang, J. Y. L. (2013). Nuclear receptors in bile acid metabolism. Drug Metabolism Reviews, 45(1), 145–155. https://doi.org/10.3109/03602532.2012.740048
  • Li, T., & Chiang, J. Y. L. (2014). Bile acid signaling in metabolic disease and drug therapy. Pharmacological Reviews, 66(4), 948–983. https://doi.org/10.1124/pr.113.008201
  • Liao, M., Somero, G. N., & Dong, Y. (2019). Comparing mutagenesis and simulations as tools for identifying functionally important sequence changes for protein thermal adaptation. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 679–688. https://doi.org/10.1073/pnas.1817455116
  • Lin, W., Wang, Y.-M., Chai, S. C., Lv, L., Zheng, J., Wu, J., Zhang, Q., Wang, Y.-D., Griffin, P. R., & Chen, T. (2017). SPA70 is a potent antagonist of human pregnane X receptor. Nature Communications, 8(1), 741. https://doi.org/10.1038/s41467-017-00780-5
  • Liu, K., Chen, X., Ren, Y., Liu, C., Yuan, A., Zheng, L., Li, B., & Zhang, Y. (2022). Identification of a novel farnesoid X receptor agonist, kaempferol-7-O-rhamnoside, a compound ameliorating drug-induced liver injury based on virtual screening and in vitro validation. Toxicology and Applied Pharmacology, 454, 116251. https://doi.org/10.1016/j.taap.2022.116251
  • Liu, Y.-H., Mo, S.-L., Bi, H.-C., Hu, B.-F., Li, C. G., Wang, Y.-T., Huang, L., Huang, M., Duan, W., Liu, J.-P., Wei, M. Q., & Zhou, S.-F. (2011). Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study. Xenobiotica; the Fate of Foreign Compounds in Biological Systems, 41(4), 259–280. https://doi.org/10.3109/00498254.2010.537395
  • Liu, Z., & Hu, M. (2007). Natural polyphenol disposition via coupled metabolic pathways. Expert Opinion on Drug Metabolism & Toxicology, 3(3), 389–406. https://doi.org/10.1517/17425255.3.3.389
  • Loh, K. C., Leong, W.-I., Carlson, M. E., Oskouian, B., Kumar, A., Fyrst, H., Zhang, M., Proia, R. L., Hoffman, E. P., & Saba, J. D. (2012). Sphingosine-1-phosphate enhances satellite cell activation in dystrophic muscles through a S1PR2/STAT3 signaling pathway. PloS One, 7(5), e37218. https://doi.org/10.1371/journal.pone.0037218
  • Luo, D., Liu, X., Jiang, L., Guo, Z., Lv, Y., Tian, X., Wang, X., Cui, S., Wan, S., Qu, X., Xu, X., & Li, X. (2022). Rational design, synthesis, and biological evaluation of novel S1PR2 antagonists for reversing 5-FU-resistance in colorectal cancer. Journal of Medicinal Chemistry, 65(21), 14553–14577. https://doi.org/10.1021/acs.jmedchem.2c00958
  • Luo, Z., Liu, H., Klein, R. S., & Tu, Z. (2019). Design, synthesis, and in vitro bioactivity evaluation of fluorine-containing analogues for sphingosine-1-phosphate 2 receptor. Bioorganic & Medicinal Chemistry, 27(16), 3619–3631. https://doi.org/10.1016/j.bmc.2019.06.047
  • Luo, Z., Yue, X., Yang, H., Liu, H., Klein, R. S., & Tu, Z. (2018). Design and synthesis of pyrazolopyridine derivatives as sphingosine 1-phosphate receptor 2 ligands. Bioorganic & Medicinal Chemistry Letters, 28(3), 488–496. https://doi.org/10.1016/j.bmcl.2017.12.010
  • Makishima, M., Lu, T. T., Xie, W., Whitfield, G. K., Domoto, H., Evans, R. M., Haussler, M. R., & Mangelsdorf, D. J. (2002). Vitamin D receptor as an intestinal bile acid sensor. Science (New York, N.Y.), 296(5571), 1313–1316. https://doi.org/10.1126/science.1070477
  • Maloney, P. R., Parks, D. J., Haffner, C. D., Fivush, A. M., Chandra, G., Plunket, K. D., Creech, K. L., Moore, L. B., Wilson, J. G., Lewis, M. C., Jones, S. A., & Willson, T. M. (2000). Identification of a chemical tool for the orphan nuclear receptor FXR. Journal of Medicinal Chemistry, 43(16), 2971–2974. https://doi.org/10.1021/jm0002127
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
  • Mani, S., Dou, W., & Redinbo, M. R. (2013). PXR antagonists and implication in drug metabolism. Drug Metabolism Reviews, 45(1), 60–72. https://doi.org/10.3109/03602532.2012.746363
  • Marín, L., Miguélez, E. M., Villar, C. J., & Lombó, F. (2015). Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Research International, 2015, 905215. https://doi.org/10.1155/2015/905215
  • Masyuk, T. V., Masyuk, A. I., Lorenzo Pisarello, M., Howard, B. N., Huang, B. Q., Lee, P.-Y., Fung, X., Sergienko, E., Ardecky, R. J., Chung, T. D. Y., Pinkerton, A. B., & LaRusso, N. F. (2017). TGR5 contributes to hepatic cystogenesis in rodents with polycystic liver diseases through cyclic adenosine monophosphate/Gαs signaling. Hepatology (Baltimore, Md.), 66(4), 1197–1218. https://doi.org/10.1002/hep.29284
  • McMillin, M., Frampton, G., Grant, S., Khan, S., Diocares, J., Petrescu, A., Wyatt, A., Kain, J., Jefferson, B., & DeMorrow, S. (2017). Bile acid-mediated sphingosine-1-phosphate receptor 2 signaling promotes neuroinflammation during hepatic encephalopathy in mice. Frontiers in Cellular Neuroscience, 11, 191. https://doi.org/10.3389/fncel.2017.00191
  • Nagahashi, M., Takabe, K., Liu, R., Peng, K., Wang, X., Wang, Y., Hait, N. C., Wang, X., Allegood, J. C., Yamada, A., Aoyagi, T., Liang, J., Pandak, W. M., Spiegel, S., Hylemon, P. B., & Zhou, H. (2015). Conjugated bile acid-activated S1P receptor 2 is a key regulator of sphingosine kinase 2 and hepatic gene expression. Hepatology (Baltimore, Md.), 61(4), 1216–1226. https://doi.org/10.1002/hep.27592
  • Nagahashi, M., Yuza, K., Hirose, Y., Nakajima, M., Ramanathan, R., Hait, N. C., Hylemon, P. B., Zhou, H., Takabe, K., & Wakai, T. (2016). The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases. Journal of Lipid Research, 57(9), 1636–1643. https://doi.org/10.1194/jlr.R069286
  • Pascussi, J. M., Busson-Le Coniat, M., Maurel, P., & Vilarem, M.-J. (2003). Transcriptional analysis of the orphan nuclear receptor constitutive androstane receptor (NR1I3) gene promoter: Identification of a distal glucocorticoid response element. Molecular Endocrinology (Baltimore, Md.), 17(1), 42–55. https://doi.org/10.1210/me.2002-0244
  • Plante, A., Shore, D. M., Morra, G., Khelashvili, G., & Weinstein, H. (2019). A machine learning approach for the discovery of ligand-specific functional mechanisms of GPCRs. Molecules, )24(11), 2097. https://doi.org/10.3390/molecules24112097
  • Pols, T. W. H., Noriega, L. G., Nomura, M., Auwerx, J., & Schoonjans, K. (2011). The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. Journal of Hepatology, 54(6), 1263–1272. https://doi.org/10.1016/j.jhep.2010.12.004
  • Pustylnyak, Y. A., Gulyaeva, L. F., & Pustylnyak, V. O. (2020). Noncanonical constitutive androstane receptor signaling in gene regulation. International Journal of Molecular Sciences, 21(18), 6735. https://doi.org/10.3390/ijms21186735
  • PyMol (2.5.2). (2021). Schrödinger.
  • Raufman, J. P., Chen, Y., Cheng, K., Compadre, C., Compadre, L., & Zimniak, P. (2002). Selective interaction of bile acids with muscarinic receptors: A case of molecular mimicry. European Journal of Pharmacology, 457(2-3), 77–84. https://doi.org/10.1016/s0014-2999(02)02690-0
  • Raufman, J.-P., Chen, Y., Zimniak, P., & Cheng, K. (2002). Deoxycholic acid conjugates are muscarinic cholinergic receptor antagonists. Pharmacology, 65(4), 215–221. https://doi.org/10.1159/000064347
  • Ridlon, J. M., Kang, D.-J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241–259. https://doi.org/10.1194/jlr.R500013-JLR200
  • Schaap, F. G., Trauner, M., & Jansen, P. L. M. (2014). Bile acid receptors as targets for drug development. Nature Reviews. Gastroenterology & Hepatology, 11(1), 55–67. https://doi.org/10.1038/nrgastro.2013.151
  • Serra, A., Macià, A., Romero, M.-P., Valls, J., Bladé, C., Arola, L., & Motilva, M.-J. (2010). Bioavailability of procyanidin dimers and trimers and matrix food effects in in vitro and in vivo models. The British Journal of Nutrition, 103(7), 944–952. https://doi.org/10.1017/S0007114509992741
  • Shi, Y., Su, W., Zhang, L., Shi, C., Zhou, J., Wang, P., Wang, H., Shi, X., Wei, S., Wang, Q., Auwerx, J., Schoonjans, K., Yu, Y., Pan, R., Zhou, H., & Lu, L. (2020). TGR5 regulates macrophage inflammation in nonalcoholic steatohepatitis by modulating NLRP3 inflammasome activation. Frontiers in Immunology, 11, 609060. https://doi.org/10.3389/fimmu.2020.609060
  • Staudinger, J. L., Goodwin, B., Jones, S. A., Hawkins-Brown, D., MacKenzie, K. I., LaTour, A., Liu, Y., Klaassen, C. D., Brown, K. K., Reinhard, J., Willson, T. M., Koller, B. H., & Kliewer, S. A. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proceedings of the National Academy of Sciences of the United States of America, 98(6), 3369–3374. https://doi.org/10.1073/pnas.051551698
  • Sun, L., Xie, C., Wang, G., Wu, Y., Wu, Q., Wang, X., Liu, J., Deng, Y., Xia, J., Chen, B., Zhang, S., Yun, C., Lian, G., Zhang, X., Zhang, H., Bisson, W. H., Shi, J., Gao, X., Ge, P., … Jiang, C. (2018). Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nature Medicine, 24(12), 1919–1929. https://doi.org/10.1038/s41591-018-0222-4
  • Teske, K. A., Bogart, J. W., Sanchez, L. M., Yu, O. B., Preston, J. V., Cook, J. M., Silvaggi, N. R., Bikle, D. D., & Arnold, L. A. (2016). Synthesis and evaluation of vitamin D receptor-mediated activities of cholesterol and vitamin D metabolites. European Journal of Medicinal Chemistry, 109, 238–246. https://doi.org/10.1016/j.ejmech.2016.01.002
  • Thomas, C., Auwerx, J., & Schoonjans, K. (2008). Bile acids and the membrane bile acid receptor TGR5—Connecting nutrition and metabolism. Thyroid : official Journal of the American Thyroid Association, 18(2), 167–174. https://doi.org/10.1089/thy.2007.0255
  • Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J., & Schoonjans, K. (2008). Targeting bile-acid signalling for metabolic diseases. Nature Reviews. Drug Discovery, 7(8), 678–693. https://doi.org/10.1038/nrd2619
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tveter, K. M., Villa-Rodriguez, J. A., Cabales, A. J., Zhang, L., Bawagan, F. G., Duran, R. M., & Roopchand, D. E. (2020). Polyphenol-induced improvements in glucose metabolism are associated with bile acid signaling to intestinal farnesoid X receptor. BMJ Open Diabetes Research & Care, 8(1), e001386. https://doi.org/10.1136/bmjdrc-2020-001386
  • Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E., & Fiorucci, S. (2009). The bile acid receptor FXR is a modulator of intestinal innate immunity. Journal of Immunology (Baltimore, Md. : 1950), )183(10), 6251–6261. https://doi.org/10.4049/jimmunol.0803978
  • Vidjaya Letchoumy, P., Chandra Mohan, K. V. P., Stegeman, J. J., Gelboin, H. V., Hara, Y., & Nagini, S. (2008). Pretreatment with black tea polyphenols modulates xenobiotic-metabolizing enzymes in an experimental oral carcinogenesis model. Oncology Research, 17(2), 75–85. https://doi.org/10.3727/096504008784523649
  • Wagner, M., Halilbasic, E., Marschall, H.-U., Zollner, G., Fickert, P., Langner, C., Zatloukal, K., Denk, H., & Trauner, M. (2005). CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology (Baltimore, Md.), 42(2), 420–430. https://doi.org/10.1002/hep.20784
  • Wan, Y.-J Y., & Sheng, L. (2018). Regulation of bile acid receptor activity⋆. Liver Research, 2(4), 180–185. https://doi.org/10.1016/j.livres.2018.09.008
  • Wang, Y., Aoki, H., Yang, J., Peng, K., Liu, R., Li, X., Qiang, X., Sun, L., Gurley, E. C., Lai, G., Zhang, L., Liang, G., Nagahashi, M., Takabe, K., Pandak, W. M., Hylemon, P. B., & Zhou, H. (2017). The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology (Baltimore, Md.), 65(6), 2005–2018. https://doi.org/10.1002/hep.29076
  • Wang, Y.-M., Ong, S. S., Chai, S. C., & Chen, T. (2012). Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opinion on Drug Metabolism & Toxicology, 8(7), 803–817. https://doi.org/10.1517/17425255.2012.685237
  • Watanabe, M., Houten, S. M., Mataki, C., Christoffolete, M. A., Kim, B. W., Sato, H., Messaddeq, N., Harney, J. W., Ezaki, O., Kodama, T., Schoonjans, K., Bianco, A. C., & Auwerx, J. (2006). Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature, 439(7075), 484–489. https://doi.org/10.1038/nature04330
  • Williamson, G., & Clifford, M. N. (2017). Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacology, 139, 24–39. https://doi.org/10.1016/j.bcp.2017.03.012
  • Xiao, Y., Hu, Z., Yin, Z., Zhou, Y., Liu, T., Zhou, X., & Chang, D. (2017). Profiling and distribution of metabolites of procyanidin B2 in mice by UPLC-DAD-ESI-IT-TOF-MSn technique. Frontiers in Pharmacology, 8, 231. https://doi.org/10.3389/fphar.2017.00231
  • Yao, R., Yasuoka, A., Kamei, A., Kitagawa, Y., Tateishi, N., Tsuruoka, N., Kiso, Y., Sueyoshi, T., Negishi, M., Misaka, T., & Abe, K. (2010). Dietary flavonoids activate the constitutive androstane receptor (CAR). Journal of Agricultural and Food Chemistry, 58(4), 2168–2173. https://doi.org/10.1021/jf903711q
  • Zhang, S.-Y., Li, R. J. W., Lim, Y.-M., Batchuluun, B., Liu, H., Waise, T. M. Z., & Lam, T. K. T. (2021). FXR in the dorsal vagal complex is sufficient and necessary for upper small intestinal microbiome-mediated changes of TCDCA to alter insulin action in rats. Gut, 70(9), 1675–1683. https://doi.org/10.1136/gutjnl-2020-321757
  • Zhang, Y., Bai, M., Zhang, B., Liu, C., Guo, Q., Sun, Y., Wang, D., Wang, C., Jiang, Y., Lin, N., & Li, S. (2015). Uncovering pharmacological mechanisms of Wu-tou decoction acting on rheumatoid arthritis through systems approaches: Drug-target prediction, network analysis and experimental validation. Scientific Reports, 5, 9463. https://doi.org/10.1038/srep09463
  • Zhao, A., Zhang, X., Sandhu, A., Edirisinghe, I., Shukitt-Hale, B., & Burton-Freeman, B. (2019). Polyphenol consumption on human bile acids metabolism: Preliminary data of bile acid profiles in human biological samples (P06-131-19). Current Developments in Nutrition, 3(Supplement_1), nzz031.P06-131-19. nzz031.P06-131-19. https://doi.org/10.1093/cdn/nzz031.P06-131-19
  • Zheng, X., Chen, T., Jiang, R., Zhao, A., Wu, Q., Kuang, J., Sun, D., Ren, Z., Li, M., Zhao, M., Wang, S., Bao, Y., Li, H., Hu, C., Dong, B., Li, D., Wu, J., Xia, J., Wang, X., … Jia, W. (2021). Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metabolism, 33(4), 791–803.e7. https://doi.org/10.1016/j.cmet.2020.11.017

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.