72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

COVID-19 diagnostic prediction on chest CT scan images using hybrid quantum-classical convolutional neural network

, , &
Pages 3737-3746 | Received 27 Feb 2023, Accepted 11 May 2023, Published online: 26 Jun 2023

References

  • Afshar, P., Heidarian, S., Enshaei, N., Naderkhani, F., Rafiee, M. J., Oikonomou, A., Fard, F. B., Samimi, K., Plataniotis, K. N., & Mohammadi, A. (2021). Covid-ct-md, covid-19 computed tomography scan dataset applicable in machine learning and deep learning. Scientific Data, 8(1), 121. https://doi.org/10.1038/s41597-021-00900-3
  • Ahmad, F., Shahid, M., Alam, M., Ashraf, Z., Sajid, M., Kotecha, K., & Dhiman, G. (2022). Levelized multiple workflow allocation strategy under precedence constraints with task merging in IaaS cloud environment. IEEE Access. 10, 92809–92827. https://doi.org/10.1109/ACCESS.2022.3202651
  • Alshazly, H., Linse, C., Barth, E., & Martinetz, T. (2021). Explainable covid-19 detection using chest CT scans and deep learning. Sensors, 21(2), 455. https://doi.org/10.3390/s21020455
  • Amin, J., Sharif, M., Gul, N., Kadry, S., & Chakraborty, C. (2022). Quantum machine learning architecture for covid-19 classification based on synthetic data generation using conditional adversarial neural network. Cognitive Computation, 14(5), 1677–1688. https://doi.org/10.1007/s12559-021-09926-6
  • Angelov, P., & Almeida Soares, E. (2020). Sars-cov-2 CT-scan dataset: A large dataset of real patients CT scans for sars-cov-2 identification. MedRxiv.
  • Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C, ACTT-1 Study Group Members. (2020). Remdesivir for the treatment of covid-19. The New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 1251–1258.
  • Cohen, J. P., Morrison, P., Dao, L., et al. (2020). Covid-19 image data collection: Prospective predictions are the future. arXiv preprint arXiv:200611988 https://doi.org/10.59275/j.melba.2020-48g7
  • Deng, X., Shao, H., Shi, L., Xie, T, & Xia W. Classification–detection approach of covid-19 based on chest X-ray and CT by using Keras pre-trained deep learning models.Computer Modeling in Engineering & Sciences. 2020;125(2):579–596. https://doi.org/10.32604/cmes.2020.011920
  • El Asnaoui, K., & Chawki, Y. (2021). Using x-ray images and deep learning for automated detection of coronavirus disease. Journal of Biomolecular Structure & Dynamics, 39(10), 3615–3626. https://doi.org/10.1080/07391102.2020.1767212
  • He, K., Zhang, X., Ren, S., et al. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 770–778.
  • Houssein, E. H., Abohashima, Z., Elhoseny, M., & Mohamed, W. M. (2022). Hybrid quantum-classical convolutional neural network model for covid-19 prediction using chest x-ray images. Journal of Computational Design and Engineering, 9(2), 343–363. https://doi.org/10.1093/jcde/qwac003
  • Howard, A. G., Zhu, M., Chen, B., et al. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:170404861
  • Huang, M. L., & Liao, Y. C. (2022). A lightweight cnn-based network on covid-19 detection using x-ray and CT images. Computers in Biology and Medicine, 146, 105604. https://doi.org/10.1016/j.compbiomed.2022.105604
  • Huang, G., Liu, Z., Van Der Maaten, L., et al. (2017). Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 4700–4708.
  • Iandola, F. N., Han, S., Moskewicz, M. W., et al. (2016). Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb model size. arXiv preprint arXiv:160207360.
  • Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., & Kaur, M. (2021). Classification of the covid-19 infected patients using densenet201 based deep transfer learning. Journal of Biomolecular Structure & Dynamics, 39(15), 5682–5689. https://doi.org/10.1080/07391102.2020.1788642
  • Kaushal, K., Sarma, P., Rana, S. V., Medhi, B., & Naithani, M. (2022). Emerging role of artificial intelligence in therapeutics for covid-19: A systematic review. Journal of Biomolecular Structure & Dynamics, 40(10), 4750–4765. https://doi.org/10.1080/07391102.2020.1855250
  • Kumar, R., Khepar, J., Yadav, K., Kareri, E., Alotaibi, S. D., Viriyasitavat, W., Gulati, K., Kotecha, K., & Dhiman, G. (2022). A systematic review on generalized fuzzy numbers and its applications: Past, present and future. Archives of Computational Methods in Engineering, 29(7), 5213–5236. https://doi.org/10.1007/s11831-022-09779-8
  • Kundu, R., Singh, P. K., Ferrara, M., Ahmadian, A., & Sarkar, R. (2022). Et-net: An ensemble of transfer learning models for prediction of covid-19 infection through chest CT-scan images. Multimedia Tools and Applications, 81(1), 31–50. https://doi.org/10.1007/s11042-021-11319-8
  • Li, W., Du, L., Liao, J., Yin, D., & Xu, X. (2021). Classification of covid-19 images based on transfer learning and feature fusion. The Imaging Science Journal, 69(1-4), 133–142. https://doi.org/10.1080/13682199.2022.2151724
  • Li, H-a., Hu, L., Liu, J., Zhang, J., & Ma, T. (2023). Covid-19 diagnosis prediction using classical-to-quantum ensemble model with transfer learning for CT scan images. The Imaging Science Journal, 1–23. https://doi.org/10.1080/13682199.2023.2212572
  • Li, J., Shao, H., Zhai, S., Jiang, Y., & Deng, X. (2023). A graphical approach for filter pruning by exploring the similarity relation between feature maps. Pattern Recognition Letters, 166, 69–75. https://doi.org/10.1016/j.patrec.2022.12.028
  • Li, H., Zeng, N., Wu, P., & Clawson, K. (2022). Cov-net: A computer-aided diagnosis method for recognizing covid-19 from chest x-ray images via machine vision. Expert Systems with Applications, 207, 118029. https://doi.org/10.1016/j.eswa.2022.118029
  • Maftouni, M., Law, A. C. C., Shen, B., et al. (2021). A robust ensemble-deep learning model for covid-19 diagnosis based on an integrated CT scan images database. In IIE Annual Conference. Proceedings; Institute of Industrial and Systems Engineers (IISE); p. 632–637.
  • Mekala, M. S., Dhiman, G., Viriyasitavat, W., Park, J. H., & Jung, H.-Y. (2023). Efficient lidar-trajectory affinity model for autonomous vehicle orchestration. IEEE Transactions on Intelligent Transportation Systems, 1–11. https://doi.org/10.1109/TITS.2023.3242900
  • Morozov, S. P., Andreychenko, A., Pavlov, N., et al. (2020). Mosmeddata: Chest CT scans with covid-19 related findings dataset. arXiv preprint arXiv:200506465.
  • Nayak, J., Swapnarekha, H., Naik, B., Dhiman, G., & Vimal, S. (2023). 25 Years of particle swarm optimization: Flourishing voyage of two decades. Archives of Computational Methods in Engineering, 30(3), 1663–1725. https://doi.org/10.1007/s11831-022-09849-x
  • Parisi, L., Neagu, D., & Ma, R. (2020). Qrelu and m-qrelu: Two novel quantum activation functions to aid medical diagnostics. arXiv preprint arXiv:201008031.
  • Rahimzadeh, M., Attar, A., & Sakhaei, S. M. (2021). A fully automated deep learning-based network for detecting covid-19 from a new and large lung CT scan dataset. Biomedical Signal Processing and Control, 68, 102588. https://doi.org/10.1016/j.bspc.2021.102588
  • Rani, S., Babbar, H., Srivastava, G., Gadekallu, T. R., & Dhiman, G. (2023). Security framework for internet of things based software defined networks using blockchain. IEEE Internet of Things Journal, 10(7), 6074–6081. https://doi.org/10.1109/JIOT.2022.3223576
  • Sarker, L., Islam, M. M., Hannan, T., et al. (2020). Covid-densenet: A deep learning architecture to detect covid-19 from chest radiology images.
  • Sengupta, K., & Srivastava, P. R. (2021). Quantum algorithm for quicker clinical prognostic analysis: An application and experimental study using CT scan images of covid-19 patients. BMC Medical Informatics and Decision Making, 21(1), 1–14. https://doi.org/10.1186/s12911-021-01588-6
  • Shukla, S. K., Pant, B., Viriyasitavat, W., Verma, D., Kautish, S., Dhiman, G., Kaur, A., Srihari, K., & Mohanty, S. N. (2022). An integration of autonomic computing with multicore systems for performance optimization in industrial internet of things. IET Communications, https://doi.org/10.1049/cmu2.12505
  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556.
  • Singamaneni, K. K., Dhiman, G., Juneja, S., Muhammad, G., AlQahtani, S. A., & Zaki, J. (2022). A novel qkd approach to enhance iiot privacy and computational knacks. Sensors, 22(18), 6741. https://doi.org/10.3390/s22186741
  • Singamaneni, K. K., Nauman, A., Juneja, S., Dhiman, G., Viriyasitavat, W., Hamid, Y., & Anajemba, J. H. (2022). An efficient hybrid qhcp-abe model to improve cloud data integrity and confidentiality. Electronics, 11(21), 3510. https://doi.org/10.3390/electronics11213510
  • Singh, S. P., Dhiman, G., Viriyasitavat, W., & Kautish, S. (2022). A novel multi-objective optimization based evolutionary algorithm for optimize the services of internet of everything. IEEE Access. 10, 106798–106811. https://doi.org/10.1109/ACCESS.2022.3209389
  • Singh, N., Hamid, Y., Juneja, S., et al. (2023). Load balancing and service discovery using docker swarm for microservice based big data applications. Journal of Cloud Computing, 12(1), 1–9.
  • Singh, S. P., Viriyasitavat, W., Juneja, S., Alshahrani, H., Shaikh, A., Dhiman, G., Singh, A., & Kaur, A. (2022). Dual adaption based evolutionary algorithm for optimized the smart healthcare communication service of the internet of things in smart city. Physical Communication, 55, 101893. https://doi.org/10.1016/j.phycom.2022.101893
  • Struyf, T., Deeks, J. J., Dinnes, J., Takwoingi, Y., Davenport, C., Leeflang, M. M., Spijker, R., Hooft, L., Emperador, D., Domen, J., Tans, A., Janssens, S., Wickramasinghe, D., Lannoy, V., Horn, S. R. A., & Van den Bruel, A, Cochrane Infectious Diseases Group. (2022). Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has covid-19. Cochrane Database of Systematic Reviews, 2022(5) https://doi.org/10.1002/14651858.CD013665.pub3
  • Szegedy, C., Vanhoucke, V., Ioffe, S., et al. (2016). Rethinking the inception architecture for computer vision. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 2818–2826.
  • Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. arxiv e-prints. arXiv preprint arXiv:190511946.
  • Tan, M., & Le, Q. (2021). Efficientnetv2: Smaller models and faster training. In International Conference on Machine Learning; PMLR; p. 10096–10106.
  • Tripathy, S. S., Mishra, K., Roy, D. S., Yadav, K., Alferaidi, A., Viriyasitavat, W., Sharmila, J., Dhiman, G., & Barik, R. K. (2023). State-of-the-art load balancing algorithms for mist-fog-cloud assisted paradigm: A review and future directions. Archives of Computational Methods in Engineering, 30(4), 2725–2760. https://doi.org/10.1007/s11831-023-09885-1
  • Umer, M. J., Amin, J., Sharif, M., Anjum, M. A., Azam, F., & Shah, J. H. (2022). An integrated framework for covid-19 classification based on classical and quantum transfer learning from a chest radiograph. Concurrency and Computation: Practice & Experience, 34(20), e6434. https://doi.org/10.1002/cpe.6434
  • Vyas, P., Vyas, G., & Dhiman, G. (2023). Ruemo—the classification framework for russia-ukraine war-related societal emotions on twitter through machine learning. Algorithms, 16(2), 69. https://doi.org/10.3390/a16020069
  • Xie, S., Girshick, R., Dollár, P., et al. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 1492–1500.
  • Yang, X., He, X., Zhao, J., et al. (2020). Covid-ct-dataset: A CT scan dataset about covid-19. arXiv preprint arXiv:200313865.
  • Yang, C. H. H., Qi, J., Chen, S. Y. C., et al. (2021). Decentralizing feature extraction with quantum convolutional neural network for automatic speech recognition. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); IEEE; p. 6523–6527.
  • Zhang, J., Xie, Y., Li, Y., et al (2020). Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint arXiv:200312338;27.
  • Zhang, X., Zhou, X., Lin, M., et al. (2018). Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; p. 6848–6856.
  • Zhao, J., Zhang, Y., He, X., et al. (2020). Covid-ct-dataset: A CT scan dataset about covid-19. arXiv preprint arXiv:200313865. 490.
  • Zhen, S., Surender, R., Dhiman, G., Rani, K. R., Ashifa, K. M., & Reegu, F. A. (2022). Intelligent-based ensemble deep learning model for security improvement in real-time wireless communication. Optik, 271, 170123. https://doi.org/10.1016/j.ijleo.2022.170123

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.