213
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Interaction of systemic drugs causing ocular toxicity with organic cation transporter: an artificial intelligence prediction

ORCID Icon, , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 5207-5218 | Received 06 Jan 2023, Accepted 09 Jun 2023, Published online: 20 Jun 2023

References

  • Al-Karmalawy, A. A., Dahab, M. A., Metwaly, A. M., Elhady, S. S., Elkaeed, E. B., Eissa, I. H., & Darwish, K. M. (2021). Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the h ACE2 receptor. Frontiers in Chemistry, 9, 661230. https://doi.org/10.3389/fchem.2021.661230
  • Ali, A., Shah, A. A., Jeang, L. J., Fallgatter, K. S., George, T. J., & DeRemer, D. L. (2022). Emergence of ocular toxicities associated with novel anticancer therapeutics: What the oncologist needs to know. Cancer Treatment Reviews, 105, 102376. https://www.sciencedirect.com/science/article/pii/S0305737222000408. https://doi.org/10.1016/j.ctrv.2022.102376
  • Amir, M., Mohammad, T., Kumar, V., Alajmi, M. F., Rehman, M. T., Hussain, A., Alam, P., Dohare, R., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Structural analysis and conformational dynamics of STN1 gene mutations involved in coat plus syndrome. Frontiers in Molecular Biosciences, 6, 41. https://doi.org/10.3389/fmolb.2019.00041
  • Ashburn, T. T., & Thor, K. B. (2004). Drug repositioning: Identifying and developing new uses for existing drugs. Nature Reviews. Drug Discovery, 3(8), 673–683. https://doi.org/10.1038/nrd1468
  • Baidya, A. T., Ghosh, K., Amin, S. A., Adhikari, N., Nirmal, J., Jha, T., & Gayen, S. (2020). In silico modelling, identification of crucial molecular fingerprints, and prediction of new possible substrates of human organic cationic transporters 1 and 2. New Journal of Chemistry, 44(10), 4129–4143. https://doi.org/10.1039/C9NJ05825G
  • Bindiganavile, S. H., Bhat, N., Lee, A. G., Gombos, D. S., & Al-Zubidi, N. (2021). Targeted cancer therapy and its ophthalmic side effects: A review. Journal of Immunotherapy and Precision Oncology, 4(1), 6–15. https://doi.org/10.36401/JIPO-20-21
  • Brock, W. J., Somps, C. J., Torti, V., Render, J. A., Jamison, J., & Rivera, M. I. (2013). Ocular toxicity assessment from systemically administered xenobiotics: Considerations in drug development. International Journal of Toxicology, 32(3), 171–188. https://doi.org/10.1177/1091581813484500
  • Bussi, G., & Laio, A. (2020). Using metadynamics to explore complex free-energy landscapes. Nature Reviews Physics, 2(4), 200–212. https://doi.org/10.1038/s42254-020-0153-0
  • Castells, D. D., Teitelbaum, B. A., & Tresley, D. J. (2002). Visual changes secondary to initiation of amiodarone: A case report and review involving ocular management in cardiac polypharmacy. Optometry: Journal of the American Optometric Association.
  • Coleman, J. J., & Pontefract, S. K. (2016). Adverse drug reactions. Clinical Medicine (London, England), 16(5), 481–485. https://doi.org/10.7861/clinmedicine.16-5-481
  • Constable, P. A., Al-Dasooqi, D., Bruce, R., & Prem-Senthil, M. (2022). A review of ocular complications associated with medications used for anxiety, depression, and stress. Clinical Optometry, 14, 13–25. https://doi.org/10.2147/OPTO.S355091
  • Davies, S., Hungerford, J., Arden, G., Marcus, R., Miller, M., & Huehns, E. (1983). Ocular toxicity of high-dose intravenous desferrioxamine. Lancet (London, England), 2(8343), 181–184. https://doi.org/10.1016/s0140-6736(83)90170-8
  • de Freitas, R. F., & Schapira, M. (2017). A systematic analysis of atomic protein–ligand interactions in the PDB. Medchemcomm, 8(10), 1970–1981. https://doi.org/10.1039/c7md00381a
  • FDA. (2018). Think it through: managing the benefits and risks of medicines. FDA.
  • Filipski, K. K., Mathijssen, R. H., Mikkelsen, T. S., Schinkel, A. H., & Sparreboom, A. (2009). Contribution of organic cation transporter 2 (OCT2) to cisplatin‐induced nephrotoxicity. Clinical Pharmacology and Therapeutics, 86(4), 396–402. https://doi.org/10.1038/clpt.2009.139
  • Fiser, A. (2010). Template-based protein structure modeling. Methods in Molecular Biology, 673, 73–94. https://doi.org/10.1007/978-1-60761-842-3_6
  • Fraunfelder, F. F. T., & Fraunfelder, F. R. W. (2021). Drug-induced ocular side effects (8th ed.), edited by F. F. T. Fraunfelder and F. R. W. Fraunfelder, iii. Elsevier.
  • Gapsys, V., & de Groot, B. L. (2020). On the importance of statistics in molecular simulations for thermodynamics, kinetics and simulation box size. eLife, 9, e57589. https://doi.org/10.7554/eLife.57589
  • Garrett, Q., Xu, S., Simmons, P. A., Vehige, J., Flanagan, J. L., & Willcox, M. D. (2008). Expression and localization of carnitine/organic cation transporter OCTN1 and OCTN2 in ocular epithelium. Investigative Ophthalmology & Visual Science, 49(11), 4844–4849. https://doi.org/10.1167/iovs.07-1528
  • Gherghel, D. (2020). Ocular side effects of systemic drugs 1: Cholesterol lowering, anti-hypertensive and cardiac drugs. Optician, 2020(3), 8236–1. https://doi.org/10.12968/opti.2020.3.8236
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2021). Evaluation of green tea polyphenols as novel corona virus (SARS CoV-2) main protease (Mpro) inhibitors–an in silico docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 39(12), 4362–4374. https://doi.org/10.1080/07391102.2020.1779818
  • Guo, D., Yang, H., Li, Q., Bae, H. J., Obianom, O., Zeng, S., Su, T., Polli, J. E., & Shu, Y. (2018). Selective inhibition on organic cation transporters by carvedilol protects mice from cisplatin-induced nephrotoxicity. Pharmaceutical Research, 35(11), 1–10. https://doi.org/10.1007/s11095-018-2486-2
  • Hafey, M. J., Aleksunes, L. M., Bridges, C. C., Brouwer, K. R., Chien, H.-C., Leslie, E. M., Hu, S., Li, Y., Shen, J., Sparreboom, A., Sprowl, J., Tweedie, D., & Lai, Y. (2022). Transporters and toxicity: Insights from the International Transporter Consortium Workshop 4. Clinical Pharmacology and Therapeutics, 112(3), 527–539. https://doi.org/10.1002/cpt.2638
  • Hendrickx, R., Johansson, J. G., Lohmann, C., Jenvert, R.-M., Blomgren, A., Börjesson, L., & Gustavsson, L. (2013). Identification of novel substrates and structure–activity relationship of cellular uptake mediated by human organic cation transporters 1 and 2. Journal of Medicinal Chemistry, 56(18), 7232–7242. https://doi.org/10.1021/jm400966v
  • Hermanto, F. E., Warsito, W., Rifa’i, M., & Widodo, N. (2022). Understanding hypocholesterolemic activity of soy isoflavones: Completing the puzzle through computational simulations. Journal of Biomolecular Structure and Dynamics, 1–7. https://doi.org/10.1080/07391102.2022.2148752
  • Hollingsworth, S. A., & Dror, R. O. (2018). Molecular dynamics simulation for all. Neuron, 99(6), 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
  • Hub, J. S., de Groot, B. L., Grubmüller, H., & Groenhof, G. (2014). Quantifying artifacts in Ewald simulations of inhomogeneous systems with a net charge. Journal of Chemical Theory and Computation, 10(1), 381–390. https://doi.org/10.1021/ct400626b
  • Jain, S., & Ecker, G. F. (2019). In silico approaches to predict drug-transporter interaction profiles: Data mining, model generation, and link to cholestasis. Methods in Molecular Biology (Clifton, N.J.), 1981, 383–396. https://doi.org/10.1007/978-1-4939-9420-5_26
  • Jensen, O., Brockmöller, J., & Dücker, C. (2021). Identification of novel high-affinity substrates of OCT1 using machine learning-guided virtual screening and experimental validation. Journal of Medicinal Chemistry, 64(5), 2762–2776. https://doi.org/10.1021/acs.jmedchem.0c02047
  • Khuri, N., & Deshmukh, S. (2018). Machine Learning for Classification of Inhibitors of Hepatic Drug Transporters [Paper presentation]. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA). https://doi.org/10.1109/ICMLA.2018.00034
  • Koepsell, H. (2004). Polyspecific organic cation transporters: Their functions and interactions with drugs. Trends in Pharmacological Sciences, 25(7), 375–381. https://doi.org/10.1016/j.tips.2004.05.005
  • Koepsell, H. (2011). Substrate recognition and translocation by polyspecific organic cation transporters.
  • Koshy, C., Parthiban, M., & Sowdhamini, R. (2010). 100 ns molecular dynamics simulations to study intramolecular conformational changes in Bax. Journal of Biomolecular Structure & Dynamics, 28(1), 71–83. https://doi.org/10.1080/07391102.2010.10507344
  • Kubo, Y., Tsuchiyama, A., Shimizu, Y., Akanuma, S-i., & Hosoya, K-i (2014). Involvement of carrier-mediated transport in the retinal uptake of clonidine at the inner blood–retinal barrier. Molecular Pharmaceutics, 11(10), 3747–3753. https://doi.org/10.1021/mp500516j
  • Li, J., Tripathi, R. C., & Tripathi, B. J. (2008). Drug-induced ocular disorders. Drug Safety, 31(2), 127–141. https://doi.org/10.2165/00002018-200831020-00003
  • Liang, C., Peyman, G. A., & Federman, J. (1996). Ocular toxicity of intravitreous transforming growth factor-beta 1. Eye, 10(6), 709–713. https://doi.org/10.1038/eye.1996.165
  • Liu, C. Y., Francis, J. H., Pulido, J., & Abramson, D. (2018). Ocular side effects of systemically administered chemotherapy. UpToDate.
  • Liu, H. C., Goldenberg, A., Chen, Y., Lun, C., Wu, W., Bush, K. T., Balac, N., Rodriguez, P., Abagyan, R., & Nigam, S. K. (2016). Molecular properties of drugs interacting with SLC22 transporters OAT1, OAT3, OCT1, and OCT2: A machine-learning approach. The Journal of Pharmacology and Experimental Therapeutics, 359(1), 215–229. https://doi.org/10.1124/jpet.116.232660
  • Liu, K., & Kokubo, H. (2017). Exploring the stability of ligand binding modes to proteins by molecular dynamics simulations: A cross-docking study. Journal of Chemical Information and Modeling, 57(10), 2514–2522. https://doi.org/10.1021/acs.jcim.7b00412
  • Lomize, M. A., Lomize, A. L., Pogozheva, I. D., & Mosberg, H. I. (2006). OPM: Orientations of proteins in membranes database. Bioinformatics (Oxford, England), 22(5), 623–625. https://doi.org/10.1093/bioinformatics/btk023
  • Meyer, M. J., & Tzvetkov, M. V. (2021). OCT1 polyspecificity—Friend or foe? Frontiers in Pharmacology, 12, 698153. https://doi.org/10.3389/fphar.2021.698153
  • Misaka, S., Knop, J., Singer, K., Hoier, E., Keiser, M., Müller, F., Glaeser, H., König, J., & Fromm, M. F. (2016). The nonmetabolized β-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and P-glycoprotein, but not of OATP1B1 and OATP1B3. Molecular Pharmaceutics, 13(2), 512–519. https://doi.org/10.1021/acs.molpharmaceut.5b00733
  • Moorthy, R. S., & Valluri, S. (1999). Ocular toxicity associated with systemic drug therapy. Current Opinion in Ophthalmology, 10(6), 438–446. https://doi.org/10.1097/00055735-199912000-00012
  • Mukhtar, S., & Jhanji, V. (2022). Effects of systemic targeted immunosuppressive therapy on ocular surface. Current Opinion in Ophthalmology, 33(4), 311–317. https://doi.org/10.1097/ICU.0000000000000860
  • Nagy, T., Tóth, Á., Telbisz, Á., Sarkadi, B., Tordai, H., Tordai, A., & Hegedűs, T. (2021). The transport pathway in the ABCG2 protein and its regulation revealed by molecular dynamics simulations. Cellular and Molecular Life Sciences : CMLS, 78(5), 2329–2339. https://doi.org/10.1007/s00018-020-03651-3
  • Neuhoff, S., Ungell, A.-L., Zamora, I., & Artursson, P. (2003). pH-dependent bidirectional transport of weakly basic drugs across Caco-2 monolayers: Implications for drug–drug interactions. Pharmaceutical Research, 20(8), 1141–1148. https://doi.org/10.1023/a:1025032511040
  • Nirmal, J., Sirohiwal, A., Singh, S. B., Biswas, N. R., Thavaraj, V., Azad, R. V., & Velpandian, T. (2013). Role of organic cation transporters in the ocular disposition of its intravenously injected substrate in rabbits: Implications for ocular drug therapy. Experimental Eye Research, 116, 27–35. https://doi.org/10.1016/j.exer.2013.07.004
  • Nirmal, J. V. T., Biswas, N. R., Azad, R. V., Vasantha, T., Bhatnagar, A., & Ghose, S. (2010). Evaluation of the relevance of OCT blockade on the transcorneal kinetics of topically applied substrates using rabbits. FIP 2010 World Congress in association with AAPS , New Orleans, USA, Nov.
  • OECD. (2020). Overview of concepts and available guidance related to integrated approaches to testing and assessment (IATA). In Series on Testing and Assesment No. 329, edited by Environment, Health and Safety, Environment Directorate, OECD.
  • OECD. (2021). “The OECD QSAR Toolbox.” https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.html. OECD. Retrieved 07/10/2022.
  • Police, A., Shankar, V. K., & Murthy, S. N. (2020). Role of taurine transporter in the retinal uptake of vigabatrin. AAPS PharmSciTech, 21(5), 1–9. https://doi.org/10.1208/s12249-020-01736-7
  • Popp, C., Gorboulev, V., Müller, T. D., Gorbunov, D., Shatskaya, N., & Koepsell, H. (2005). Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Molecular Pharmacology, 67(5), 1600–1611. https://doi.org/10.1124/mol.104.008839
  • Prakash, B., Kumar, H. M., Palaniswami, S., & Lakshman, B. H. (2019). Ocular side effects of systemic drugs used in dermatology. Indian Journal of Dermatology, 64(6), 423–430. https://doi.org/10.4103/ijd.IJD_353_18
  • Pu, L., Naderi, M., Liu, T., Wu, H.-C., Mukhopadhyay, S., & Brylinski, M. (2019). e toxpred: A machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacology & Toxicology, 20(1), 2. https://doi.org/10.1186/s40360-018-0282-6
  • Ramachandran, G. t., & Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Advances in Protein Chemistry, 23, 283–438.
  • Redeker, K.-E M., Jensen, O., Gebauer, L., Meyer-Tönnies, M. J., & Brockmöller, J. (2022). Atypical substrates of the organic cation transporter 1. Biomolecules, 12(11), 1664. https://doi.org/10.3390/biom12111664
  • Richa, S., & Yazbek, J.-C. (2010). Ocular adverse effects of common psychotropic agents. CNS Drugs, 24(6), 501–526. https://doi.org/10.2165/11533180-000000000-00000
  • Santaella, R. M., & Fraunfelder, F. W. (2007). Ocular adverse effects associated with systemic medications. Drugs, 67(1), 75–93. https://doi.org/10.2165/00003495-200767010-00006
  • Schlessinger, A., Welch, M. A., van Vlijmen, H., Korzekwa, K., Swaan, P. W., & Matsson, P. (2018). Molecular modeling of drug-transporter interactions-An international transporter consortium perspective. Clinical Pharmacology and Therapeutics, 104(5), 818–835. https://doi.org/10.1002/cpt.1174
  • Shin, E., Lim, D. H., Han, J., Nam, D.-H., Park, K., Ahn, M.-J., Kang, W. K., Lee, J., Ahn, J. S., Lee, S.-H., Sun, J.-M., Jung, H. A., & Chung, T.-Y. (2020). Markedly increased ocular side effect causing severe vision deterioration after chemotherapy using new or investigational epidermal or fibroblast growth factor receptor inhibitors. BMC Ophthalmology, 20(1), 19. https://doi.org/10.1186/s12886-019-1285-9
  • Shoichet, B. K., Leach, A. R., & Kuntz, I. D. (1999). Ligand solvation in molecular docking. Proteins: Structure, Function, and Genetics, 34(1), 4–16. https://doi.org/10.1002/(SICI)1097-0134(19990101)34:1<4::AID-PROT2>3.0.CO;2-6
  • Tehrani, R., Ostrowski, R. A., Hariman, R., & Jay, W. M. (2008). Ocular toxicity of hydroxychloroquine. Seminars in Ophthalmology, 23(3), 201–209. https://doi.org/10.1080/08820530802049962
  • Valsson, O., Tiwary, P., & Parrinello, M. (2016). Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint. Annual Review of Physical Chemistry, 67(1), 159–184. https://doi.org/10.1146/annurev-physchem-040215-112229
  • Vamathevan, J., Clark, D., Czodrowski, P., Dunham, I., Ferran, E., Lee, G., Li, B., Madabhushi, A., Shah, P., Spitzer, M., & Zhao, S. (2019). Applications of machine learning in drug discovery and development. Nature Reviews. Drug Discovery, 18(6), 463–477. https://doi.org/10.1038/s41573-019-0024-5
  • Velpandian, T., Nirmal, J., Sirohiwal, A., Singh, S. B., Vasantha, T., Azad, R. V., & Ghose, S. (2012). Evaluation of the modulation of Organic Cation Transporter (OCT) in the Tear Disposition of its Substrates in Rabbits. Investigative Ophthalmology & Visual Science, 53(14), 5333–5333.
  • Vishnevskia-Dai, V., Rozner, L., Berger, R., Jaron, Z., Elyashiv, S., Markel, G., & Zloto, O. (2021). Ocular side effects of novel anti-cancer biological therapies. Scientific Reports, 11(1), 787. https://doi.org/10.1038/s41598-020-80898-7
  • Weng, Y. L., Naik, S. R., Dingelstad, N., Lugo, M. R., Kalyaanamoorthy, S., & Ganesan, A. (2021). Molecular dynamics and in silico mutagenesis on the reversible inhibitor-bound SARS-CoV-2 main protease complexes reveal the role of lateral pocket in enhancing the ligand affinity. Scientific Reports, 11(1), 7429. https://doi.org/10.1038/s41598-021-86471-0
  • Yuan, X., Feng, Y., Li, D., & Li, M. (2019). Unilateral visual impairment in a patient undergoing chemotherapy: A case report and clinical findings. BMC Ophthalmology, 19(1), 236. https://doi.org/10.1186/s12886-019-1246-3
  • Zhang, T., Xiang, C. D., Gale, D., Carreiro, S., Wu, E. Y., & Zhang, E. Y. (2008). Drug transporter and cytochrome P450 mRNA expression in human ocular barriers: Implications for ocular drug disposition. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 36(7), 1300–1307. https://doi.org/10.1124/dmd.108.021121

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.