169
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel T-cell epitopes on monkeypox virus and development of multi-epitopes vaccine using immunoinformatics approaches

ORCID Icon, , , , ORCID Icon, & ORCID Icon show all
Pages 5349-5364 | Received 25 Oct 2022, Accepted 10 Jun 2023, Published online: 24 Jun 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Aebig, J. A., Mullen, G. E. D., Dobrescu, G., Rausch, K., Lambert, L., Ajose-Popoola, O., Long, C. A., Saul, A., & Miles, A. P. (2007). Formulation of vaccines containing CpG oligonucleotides and alum. Journal of Immunological Methods, 323(2), 139–146.https://doi.org/10.1016/j.jim.2007.04.003
  • Aier, I., Varadwaj, P. K., & Raj, U. (2016). Structural insights into conformational stability of both wild-type and mutant EZH2 receptor. Scientific Reports, 6, 34984. https://doi.org/10.1038/srep34984
  • Alakunle, E., Moens, U., Nchinda, G., & Okeke, M. I. (2020). Monkeypox virus in Nigeria: Infection biology, epidemiology, and evolution. Viruses, 12(11), 1257. https://doi.org/10.3390/v12111257
  • Bhattacharya, K., Shamkh, I. M., Khan, M. S., Lotfy, M. M., Nzeyimana, J. B., Abutayeh, R. F., Hamdy, N. M., Hamza, D., Chanu, N. R., Khanal, P., Bhattacharjee, A., & Basalious, E. B. (2022). Multi-epitope vaccine design against monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines, 10(12), 2010. https://doi.org/10.3390/vaccines10122010
  • Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., Kiefer, F., Gallo Cassarino, T., Bertoni, M., Bordoli, L., & Schwede, T. (2014). SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(Web Server issue), W252–258. https://doi.org/10.1093/nar/gku340
  • Buchman, G. W., Cohen, M. E., Xiao, Y., Richardson-Harman, N., Silvera, P., DeTolla, L. J., Davis, H. L., Eisenberg, R. J., Cohen, G. H., & Isaacs, S. N. (2010). A protein-based smallpox vaccine protects non-human primates from a lethal monkeypox virus challenge. Vaccine, 28(40), 6627–6636. https://doi.org/10.1016/j.vaccine.2010.07.030
  • Bui, H.-H., Sidney, J., Dinh, K., Southwood, S., Newman, M. J., & Sette, A. (2006). Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 7(1), 153. https://doi.org/10.1186/1471-2105-7-153
  • Bunge, E. M., Hoet, B., Chen, L., Lienert, F., Weidenthaler, H., Baer, L. R., & Steffen, R. (2022). The changing epidemiology of human monkeypox-A potential threat? A systematic review. PLoS Neglected Tropical Diseases, 16(2), e0010141. https://doi.org/10.1371/journal.pntd.0010141
  • Calis, J. J. A., Maybeno, M., Greenbaum, J. A., Weiskopf, D., De Silva, A. D., Sette, A., Keşmir, C., & Peters, B. (2013). Properties of MHC Class I presented peptides that enhance immunogenicity. PLoS Computational Biology, 9(10), e1003266. https://doi.org/10.1371/journal.pcbi.1003266
  • Centers for Disease Control and Prevention. (2022). Monkeypox—Vaccine guidance. https://www.cdc.gov/poxvirus/monkeypox/clinicians/smallpox-vaccine.html
  • Chatterjee, N., Ojha, R., Khatoon, N., & Prajapati, V. K. (2018). Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. International Journal of Biological Macromolecules, 118(Pt A), 180–188. https://doi.org/10.1016/j.ijbiomac.2018.06.080
  • Chen, X., Zaro, J. L., & Shen, W.-C. (2013). Fusion protein linkers: Property, design and functionality. Advanced Drug Delivery Reviews, 65(10), 1357–1369. https://doi.org/10.1016/j.addr.2012.09.039
  • Cheng, J., Randall, A. Z., Sweredoski, M. J., & Baldi, P. (2005). SCRATCH: A protein structure and structural feature prediction server. Nucleic Acids Research, 33(Web Server issue), W72–76. https://doi.org/10.1093/nar/gki396
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Cooper, C. L., Davis, H. L., Angel, J. B., Morris, M. L., Elfer, S. M., Seguin, I., Krieg, A. M., & Cameron, D. W. (2005). CPG 7909 adjuvant improves hepatitis B virus vaccine seroprotection in antiretroviral-treated HIV-infected adults. AIDS (London, England), 19(14), 1473–1479. https://doi.org/10.1097/01.aids.0000183514.37513.d2
  • Cooper, C. L., Davis, H. L., Morris, M. L., Efler, S. M., Adhami, M. A., Krieg, A. M., Cameron, D. W., & Heathcote, J. (2004). CPG 7909, an immunostimulatory TLR9 agonist oligodeoxynucleotide, as adjuvant to Engerix-B HBV vaccine in healthy adults: A double-blind phase I/II study. Journal of Clinical Immunology, 24(6), 693–701. https://doi.org/10.1007/s10875-004-6244-3
  • De Gregorio, E., Caproni, E., & Ulmer, J. B. (2013). Vaccine adjuvants: Mode of action. Frontiers in Immunology, 4, 214. https://doi.org/10.3389/fimmu.2013.00214
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2—A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278.https://doi.org/10.1007/s00894-014-2278-5
  • Ezzemani, W., Kettani, A., Sappati, S., Kondaka, K., El Ossmani, H., Tsukiyama-Kohara, K., Altawalah, H., Saile, R., Kohara, M., Benjelloun, S., & Ezzikouri, S. (2023). Reverse vaccinology-based prediction of a multi-epitope SARS-CoV-2 vaccine and its tailoring to new coronavirus variants. Journal of Biomolecular Structure and Dynamics, 41(11), 4917–4938. https://doi.org/10.1080/07391102.2022.2075468
  • Ezzemani, W., Kettani, A., Sappati, S., Kondaka, K., El Ossmani, H., Tsukiyama-Kohara, K., Altawalah, H., Saile, R., Kohara, M., Benjelloun, S., & Ezzikouri, S. (2023). Design of a multi-epitope Zika virus vaccine candidate—An in-silico study. Journal of Biomolecular Structure and Dynamics, 41, 3762–3771. https://doi.org/10.1080/07391102.2022.2055648
  • Ezzemani, W., Windisch, M. P., Kettani, A., Altawalah, H., Nourlil, J., Benjelloun, S., & Ezzikouri, S. (2021). Immuno-informatics-based identification of novel potential B cell and T cell epitopes to fight zika virus infections. Infectious Disorders Drug Targets, 21(4), 572–581. https://doi.org/10.2174/1871526520666200810153657
  • Fleri, W., Paul, S., Dhanda, S. K., Mahajan, S., Xu, X., Peters, B., & Sette, A. (2017). The immune epitope database and analysis resource in epitope discovery and synthetic vaccine design. Frontiers in Immunology, 8, 278. https://doi.org/10.3389/fimmu.2017.00278
  • Gorai, S., Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 98, 105237. https://doi.org/10.1016/j.meegid.2022.105237
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–531. https://doi.org/10.1093/nar/gki376
  • Gupta, P. S. S., Bhat, H. R., Biswal, S., & Rana, M. K. (2020). Computer-aided discovery of bis-indole derivatives as multi-target drugs against cancer and bacterial infections: DFT, docking, virtual screening, and molecular dynamics studies. Journal of Molecular Liquids, 320, 114375. https://doi.org/10.1016/j.molliq.2020.114375
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. S. (2015). Peptide toxicity prediction. Methods in Molecular Biology (Clifton, N.J.), 1268, 143–157. https://doi.org/10.1007/978-1-4939-2285-7_7
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., Open Source Drug Discovery Consortium, & Raghava, G. P. S. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS ONE, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Heegaard, P. M. H., Dedieu, L., Johnson, N., Le Potier, M.-F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., & Sørensen, N. S. (2011). Adjuvants and delivery systems in veterinary vaccinology: Current state and future developments. Archives of Virology, 156(2), 183–202. https://doi.org/10.1007/s00705-010-0863-1
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–388. https://doi.org/10.1093/nar/gkt458
  • Isidro, J., Borges, V., Pinto, M., Ferreira, R., Sobral, D.,, Nunes, A., Santos, J. D., Borrego, M. J., Núncio, S., Pelerito, A., Cordeiro, R., & Gomes, J. P. (2022). First draft genome sequene of Monkeypox virus associated with the suspected multi-country outbreak, May 2022 (Confirmed case in Portugal). Retrieved May 23, 2022, from https://virological.org/t/first-draft-genome-sequence-of-monkeypox-virus-associated-with-the-suspected-multi-country-outbreak-may-2022-confirmed-case-in-portugal/799
  • Islam, M. R., Hossain, M. J., Roy, A., Hasan, A. H. M. N., Rahman, M. A., Shahriar, M., & Bhuiyan, M. A. (2022). Repositioning potentials of smallpox vaccines and antiviral agents in monkeypox outbreak: A rapid review on comparative benefits and risks. Health Science Reports, 5(5), e798. https://doi.org/10.1002/hsr2.798
  • Israely, T., Melamed, S., Achdout, H., Erez, N., Politi, B., Waner, T., Lustig, S., & Paran, N. (2014). TLR3 and TLR9 agonists improve postexposure vaccination efficacy of live smallpox vaccines. PloS One, 9(10), e110545. https://doi.org/10.1371/journal.pone.0110545
  • Jaydari, A., Nazifi, N., & Forouharmehr, A. (2020). Computational design of a novel multi-epitope vaccine against Coxiella burnetii. Human Immunology, 81(10-11), 596–605. https://doi.org/10.1016/j.humimm.2020.05.010
  • Jurk, M., Schulte, B., Kritzler, A., Noll, B., Uhlmann, E., Wader, T., Schetter, C., Krieg, A. M., & Vollmer, J. (2004). C-Class CpG ODN: Sequence requirements and characterization of immunostimulatory activities on mRNA level. Immunobiology, 209(1–2), 141–154. https://doi.org/10.1016/j.imbio.2004.02.006
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895.https://doi.org/10.1038/s41598-020-67749-1
  • Kim, S. K., Ragupathi, G., Cappello, S., Kagan, E., & Livingston, P. O. (2000). Effect of immunological adjuvant combinations on the antibody and T-cell response to vaccination with MUC1-KLH and GD3-KLH conjugates. Vaccine, 19(4–5), 530–537. https://doi.org/10.1016/s0264-410x(00)00195-x
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–297. https://doi.org/10.1093/nar/gks493
  • Kovacs, J. A., Chacón, P., & Abagyan, R. (2004). Predictions of protein flexibility: First-order measures. Proteins: Structure, Function, and Bioinformatics, 56(4), 661–668. https://doi.org/10.1002/prot.20151
  • Krieg, A. M. (2006). Therapeutic potential of Toll-like receptor 9 activation. Nature Reviews Drug Discovery, 5(6), 471–484. https://doi.org/10.1038/nrd2059
  • Kwissa, M., Amara, R. R., Robinson, H. L., Moss, B., Alkan, S., Jabbar, A., Villinger, F., & Pulendran, B. (2007). Adjuvanting a DNA vaccine with a TLR9 ligand plus Flt3 ligand results in enhanced cellular immunity against the simian immunodeficiency virus. The Journal of Experimental Medicine, 204(11), 2733–2746. https://doi.org/10.1084/jem.20071211
  • Laskowski, R. A., Rullmannn, J. A., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Laskowski, R. A. (2009). PDBsum new things. Nucleic Acids Research, 37(Database issue), D355–359. https://doi.org/10.1093/nar/gkn860
  • Li, Y., Olson, V. A., Laue, T., Laker, M. T., & Damon, I. K. (2006). Detection of monkeypox virus with real-time PCR assays. Journal of Clinical Virology: The Official Publication of the Pan American Society for Clinical Virology, 36(3), 194–203. https://doi.org/10.1016/j.jcv.2006.03.012
  • Lim, H. X., Lim, J., Jazayeri, S. D., Poppema, S., & Poh, C. L. (2021). Development of multi-epitope peptide-based vaccines against SARS-CoV-2. Biomedical Journal, 44(1), 18–30. https://doi.org/10.1016/j.bj.2020.09.005
  • Lim, H. X., Lim, J., & Poh, C. L. (2021). Identification and selection of immunodominant B and T cell epitopes for dengue multi-epitope-based vaccine. Medical Microbiology and Immunology, 210(1), 1–11. https://doi.org/10.1007/s00430-021-00700-x
  • Lopéz-Blanco, J. R., Garzón, J. I., & Chacón, P. (2011). iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics (Oxford, England), 27(20), 2843–2850. https://doi.org/10.1093/bioinformatics/btr497
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–276. https://doi.org/10.1093/nar/gku339
  • Macneil, A., Reynolds, M. G., Braden, Z., Carroll, D. S., Bostik, V., Karem, K., Smith, S. K., Davidson, W., Li, Y., Moundeli, A., Mombouli, J.-V., Jumaan, A. O., Schmid, D. S., Regnery, R. L., & Damon, I. K. (2009). Transmission of atypical varicella-zoster virus infections involving palm and sole manifestations in an area with monkeypox endemicity. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America, 48(1), e6-8–e8. https://doi.org/10.1086/595552
  • Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J., & Omidinia, E. (2014). A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 349, 121–134. https://doi.org/10.1016/j.jtbi.2014.01.018
  • Nielsen, M., & Lund, O. (2009). NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics, 10, 296.https://doi.org/10.1186/1471-2105-10-296
  • Ohto, U., Shibata, T., Tanji, H., Ishida, H., Krayukhina, E., Uchiyama, S., Miyake, K., & Shimizu, T. (2015). Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature, 520(7549), 702–705. https://doi.org/10.1038/nature14138
  • Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2018). Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. Vaccine, 36(17), 2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
  • Pal, M., Mengstie, F., & Kandi, V. (2017). Epidemiology, diagnosis, and control of monkeypox disease: A comprehensive review. American Journal of Infectious Diseases and Microbiology, 5(2), 94–99. https://doi.org/10.12691/ajidm-5-2-4
  • Pauling, L., Corey, R. B., & Branson, H. R. (1951). The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. Proceedings of the National Academy of Sciences of the United States of America, 37(4), 205–211. https://doi.org/10.1073/pnas.37.4.205
  • Mahmud, S., Rafi, M. O., Paul, G. K., Promi, M. M., Shimu, M. S. S., Biswas, S., Emran, T. B., Dhama, K., Alyami, S. A., Moni, M. A., & Saleh, M. A. (2021). Designing a multi-epitope vaccine candidate to combat MERS-CoV by employing an immunoinformatics approach. Scientific Reports, 11(1), 15431. https://doi.org/10.1038/s41598-021-92176-1
  • Moss, B. (2013). Poxvirus DNA replication. Cold Spring Harbor Perspectives in Biology, 5(9), a010199–a010199. https://doi.org/10.1101/cshperspect.a010199
  • Palatnik-de-Sousa, C. B., Soares, I. d S., & Rosa, D. S. (2018). Editorial: Epitope discovery and synthetic vaccine design. Frontiers in Immunology, 9, 826. https://doi.org/10.3389/fimmu.2018.00826
  • Panda, S. K., Saxena, S., & Guruprasad, L. (2020). Homology modeling, docking and structure-based virtual screening for new inhibitor identification of Klebsiella pneumoniae heptosyltransferase-III. Journal of Biomolecular Structure & Dynamics, 38(7), 1887–1902. https://doi.org/10.1080/07391102.2019.1624296
  • Parker, S., & Buller, R. M. (2013). A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virology, 8(2), 129–157. https://doi.org/10.2217/fvl.12.130
  • Pauli, G., Blümel, J., Burger, R., Drosten, C., Gröner, A., Gürtler, L., Heiden, M., Hildebrandt, M., Jansen, B., Montag-Lessing, T., Offergeld, R., Seitz, R., Schlenkrich, U., Schottstedt, V., Strobel, J., Willkommen, H., & von König, C.-H W. (2010). Orthopox viruses: Infections in humans. Transfusion Medicine and Hemotherapy: Offizielles Organ Der Deutschen Gesellschaft Fur Transfusionsmedizin Und Immunhamatologie, 37(6), 351–364. https://doi.org/10.1159/000322101
  • Quarleri, J., Delpino, M. V., & Galvan, V. (2022). Monkeypox: Considerations for the understanding and containment of the current outbreak in non-endemic countries. GeroScience, 44(4), 2095–2103. https://doi.org/10.1007/s11357-022-00611-6
  • Rao, A. K., Schulte, J., Chen, T.-H., Hughes, C. M., Davidson, W., Neff, J. M., Markarian, M., Delea, K. C., Wada, S., Liddell, A., Alexander, S., Sunshine, B., Huang, P., Honza, H. T., Rey, A., Monroe, B., Doty, J., Christensen, B., Delaney, L., … McCollum, A. M. (2022). Monkeypox in a traveler returning from Nigeria—Dallas, Texas, July 2021. MMWR. Morbidity and Mortality Weekly Report, 71(14), 509–516. https://doi.org/10.15585/mmwr.mm7114a1
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–W454. https://doi.org/10.1093/nar/gkaa379
  • Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5, 172. https://doi.org/10.3389/fmicb.2014.00172
  • Russell, C. D., Unger, S. A., Walton, M., & Schwarze, J. (2017). The human immune response to respiratory syncytial virus infection. Clinical Microbiology Reviews, 30(2), 481–502. https://doi.org/10.1128/CMR.00090-16
  • Saghazadeh, A., & Rezaei, N. (2022). Poxviruses and the immune system: Implications for monkeypox virus. International Immunopharmacology, 113(Pt A), 109364. https://doi.org/10.1016/j.intimp.2022.109364
  • Sah, R., Abdelaal, A., Reda, A., Katamesh, B. E., Manirambona, E., Abdelmonem, H., Mehta, R., Rabaan, A. A., Alhumaid, S., Alfouzan, W. A., Alomar, A. I., Khamis, F., Alofi, F. S., Aljohani, M. H., Alfaraj, A. H., Alfaresi, M., Al-Jishi, J. M., Alsalman, J., Alynbiawi, A., Almogbel, M. S., & Rodriguez-Morales, A. J. (2022). Monkeypox and its possible sexual transmission: Where are we now with its evidence? Pathogens, 11(8), 924. https://doi.org/10.3390/pathogens11080924
  • Sanches, R. C. O., Tiwari, S., Ferreira, L. C. G., Oliveira, F. M., Lopes, M. D., Passos, M. J. F., Maia, E. H. B., Taranto, A. G., Kato, R., Azevedo, V. A. C., & Lopes, D. O. (2021). Immunoinformatics design of multi-epitope peptide-based vaccine against schistosoma mansoni using transmembrane proteins as a target. Frontiers in Immunology, 12, 621706. https://doi.org/10.3389/fimmu.2021.621706
  • Shchelkunov, S. N., & Shchelkunova, G. A. (2020). Genes that control vaccinia virus immunogenicity. Acta Naturae, 12(1), 33–41. https://doi.org/10.32607/actanaturae.10935
  • Song, H.-S., Park, S., Huh, J.-W., Lee, Y.-R., Jung, D.-J., Yang, C., Kim, S. H., Kim, H. M., & Kim, Y.-M. (2022). N-glycosylation of UNC93B1 at a specific asparagine residue is required for TLR9 signaling. Frontiers in Immunology, 13, 875083. https://doi.org/10.3389/fimmu.2022.875083
  • Sørensen, H. P., & Mortensen, K. K. (2005). Soluble expression of recombinant proteins in the cytoplasm of Escherichia coli. Microbial Cell Factories, 4(1), 1. https://doi.org/10.1186/1475-2859-4-1
  • Ullah, A., Shahid, F. A., Haq, M. U., Tahir Ul Qamar, M., Irfan, M., Shaker, B., Ahmad, S., Alrumaihi, F., Allemailem, K. S., & Almatroudi, A. (2022). An integrative reverse vaccinology, immunoinformatic, docking and simulation approaches towards designing of multi-epitopes based vaccine against monkeypox virus. Journal of Biomolecular Structure & Dynamics, 1–14.https://doi.org/10.1080/07391102.2022.2125441
  • Vajda, S., Yueh, C., Beglov, D., Bohnuud, T., Mottarella, S. E., Xia, B., Hall, D. R., & Kozakov, D. (2017). New additions to the ClusPro server motivated by CAPRI. Proteins, 85(3), 435–444. https://doi.org/10.1002/prot.25219
  • Vaughan, A. M., Cenciarelli, O., Colombe, S., Alves de Sousa, L., Fischer, N., Gossner, C. M., Pires, J., Scardina, G., Aspelund, G., Avercenko, M., Bengtsson, S., Blomquist, P., Caraglia, A., Chazelle, E., Cohen, O., Diaz, A., Dillon, C., Dontsenko, I., Kotkavaara, K., … Haussig, J. M. (2022). A large multi-country outbreak of monkeypox across 41 countries in the WHO European Region, 7 March to 23 August 2022. Eurosurveillance, 27(36), 2200620. https://doi.org/10.2807/1560-7917.ES.2022.27.36.2200620
  • WHO. (2022). Monkeypox: 19 May 2022. Retrieved October 29https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • WHO. (2022). Multi-country monkeypox outbreak in non-endemic countries: 21 May 2022. Retrieved October 29, https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON385
  • WHO. (2022). Monkeypox. https://www.who.int/news-room/fact-sheets/detail/monkeypox
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–410. https://doi.org/10.1093/nar/gkm290
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J.-C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1998). Protein identification and analysis tools in the ExPASy server. In A. J. Link (Ed.), 2-D Proteome analysis protocols (Vol. 112, pp. 531–552). Humana Press. https://doi.org/10.1385/1-59259-584-7:531
  • Xiao, Y., Zeng, Y., Schante, C., Joshi, S. B., Buchman, G. W., Volkin, D. B., Middaugh, C. R., & Isaacs, S. N. (2020). Short-term and longer-term protective immune responses generated by subunit vaccination with smallpox A33, B5, L1 or A27 proteins adjuvanted with aluminum hydroxide and CpG in mice challenged with vaccinia virus. Vaccine, 38(38), 6007–6018. https://doi.org/10.1016/j.vaccine.2020.07.018
  • Yu, M., Zhu, Y., Li, Y., Chen, Z., Sha, T., Li, Z., Zhang, F., & Ding, J. (2021). Design of a novel multi-epitope vaccine against echinococcus granulosus in immunoinformatics. Frontiers in Immunology, 12, 668492. https://doi.org/10.3389/fimmu.2021.668492
  • Zaharieva, N., Dimitrov, I., Flower, D. R., & Doytchinova, I. (2019). VaxiJen dataset of bacterial immunogens: An update. Current Computer-Aided Drug Design, 15(5), 398–400. https://doi.org/10.2174/1573409915666190318121838
  • Zaib, S., Rana, N., Areeba, null, Hussain, N., Alrbyawi, H., Dera, A. A., Khan, I., Khalid, M., Khan, A., & Al-Harrasi, A. (2023). Designing multi-epitope monkeypox virus-specific vaccine using immunoinformatics approach. Journal of Infection and Public Health, 16(1), 107–116. https://doi.org/10.1016/j.jiph.2022.11.033

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.